首页> 外文学位 >Modularity Analysis of Metabolic Networks Based on Shortest Retroactive Distances (ShReD).
【24h】

Modularity Analysis of Metabolic Networks Based on Shortest Retroactive Distances (ShReD).

机译:基于最短追溯距离(ShReD)的代谢网络模块化分析。

获取原文
获取原文并翻译 | 示例

摘要

Cellular metabolism is very complex. Large scale networks that are used for modeling single-cell organism or tissue-specific systems typically comprise of several thousand reactions, each representing a unique biochemical conversion of substrate to product. These in silico models have the potential for predicting how a cell may respond to a perturbation in the form of either a genetic intervention or external stimulus. However, the sheer complexity of these networks remains an impediment for the construction of predictive kinetic ODE models, because the number of system parameters that need to be estimated typically far exceeds the available experimental data and most estimated parameters are not statistically identifiable. Alternatively, graph-based modeling of metabolic networks, where reactions can be denoted by nodes and their interactions described by directed edges, allow one to survey solely the topology of the network and identify structural features that may offer predictable dynamics. Moreover, graph theoretical tools allow for the discovery of modules, or a subset of reactions containing few inputs and outputs, that together function in concert to isolate perturbations from propagating to the rest of the network, a characteristic of metabolic robustness. In this regard, the systematic modularity analysis serves to reduce the complexity of metabolic models and identify modules that both confer robustness and reveal strong coupling among reactions that may not necessarily be intuitive by viewing a two-dimensional cartography of metabolism.;In this thesis, the governing hypothesis is that retroactive, or cyclical, interactions in the form of feedback loops and metabolic cycles engender robustness, and serve as a defining structural feature for the systematic identification of functional modules. As such, a graph-theoretical metric called the Shortest Retroactive Distance (ShReD) is introduced to be used in conjunction with a known network partition algorithm to produce a hierarchical tree of modules, each enriched in cyclical pathways and allosteric feedback loops. Applied to a hepatocyte (liver cell) metabolic network, the ShReD-based partition identifies a `redox' module that couples reactions from apparently distant pathways such as glucose, pyruvate, lipid, and drug metabolism through the shared production and consumption of NADPH, suggesting that cofactors greatly influence the modularity of the network. Recognizing that metabolic networks are not static, a metabolic flux-based edge weighting scheme is proposed to capture the relative engagement between reaction nodes in the graph network. Applying the ShReD-based partition algorithm to weighted adipocyte (fat cell) networks reveals that major physiological changes such as cellular differentiation lead to substantial reorganization in the modularity of the network. In addition, ShReD-based modularity serves as a platform for a targeted motif search within functional modules to discover novel metabolic substrate cycles (a.k.a. futile cycles), which have been recently proposed to be targets for obesity and even cancer. Identifying these substrate cycles requires elementary flux modes (EFM) computation, which would otherwise be infeasible on a large scale network.;Prospectively, modularity analysis of metabolic networks provides theoretical guidance for which reaction rates and metabolite levels may be altered in the face of a perturbation. To experimentally confirm predictions, targeted metabolomics using tandem mass spectrometry (LC/MS-MS) is used to obtain absolute quantification of metabolite concentrations. As an example, an in silico model predicts a set of tryptophan-derived metabolites that can only be exclusively produced by the gut microbiome and may have anti-inflammatory properties. In vivo levels of these indole-backbone metabolite levels are quantified in cecum samples from mice at two different age groups. Statistically significant differences between the two groups suggest that age influences the microbiome composition as well as the metabolites they produce.
机译:细胞代谢非常复杂。用于建模单细胞生物或组织特异性系统的大规模网络通常包含数千个反应,每个反应代表底物向产物的独特生化转化。这些计算机模拟模型有潜力预测细胞如何以遗传干预或外部刺激的形式对扰动做出反应。但是,这些网络的绝对复杂性仍然是构建预测动力学ODE模型的障碍,因为通常需要估计的系统参数数量远远超出了可用的实验数据,并且大多数估计的参数在统计上无法识别。可替代地,基于代谢网络的基于图的建模,其中反应可以由节点表示,它们的相互作用由有向边描述,允许人们仅调查网络的拓扑并识别可以提供可预测动态的结构特征。此外,图论理论工具允许发现模块或包含少量输入和输出的反应的子集,这些模块或模块协同工作以将扰动与传播到网络的其余部分隔离开,这是代谢鲁棒性的特征。在这方面,系统的模块化分析有助于降低代谢模型的复杂性,并通过查看代谢的二维制图来确定既具有鲁棒性又可以揭示反应之间强耦合的模块,而这些耦合可能不一定是直观的。主要假设是,反馈循环和代谢循环形式的追溯性或周期性相互作用会增强鲁棒性,并成为系统识别功能模块的定义结构特征。因此,引入了称为最短追溯距离(ShReD)的图形理论度量,以与已知的网络分区算法结合使用,以生成模块的分层树,每个模块树都丰富了循环路径和变构反馈回路。基于ShReD的分区应用于肝细胞(肝细胞)代谢网络时,可识别一个“氧化还原”模块,该模块通过共享的NADPH的生产和消费,将来自显然遥远的途径(例如葡萄糖,丙酮酸,脂质和药物代谢)的反应耦合在一起。辅助因素极大地影响了网络的模块化。认识到代谢网络不是静态的,提出了一种基于代谢通量的边缘加权方案,以捕获图网络中反应节点之间的相对参与。将基于ShReD的分区算法应用于加权的脂肪细胞(脂肪细胞)网络表明,主要的生理变化(例如细胞分化)导致网络模块的实质性重组。此外,基于ShReD的模块性还可以作为功能模块内目标基序搜索的平台,以发现新的代谢底物循环(又称无效循环),最近已提出将其作为肥胖症甚至癌症的靶标。识别这些底物循环需要基本通量模式(EFM)计算,否则在大型网络上是不可行的;代谢网络的模块化分析可为理论上的反应速度和代谢物水平变化提供理论指导摄动。为了通过实验确认预测,使用串联质谱分析法(LC / MS-MS)进行靶向代谢组学来获得代谢物浓度的绝对定量。例如,计算机模型预测一组色氨酸衍生的代谢产物,这些代谢产物只能由肠道微生物组专门产生,并且可能具有抗炎特性。在来自两个不同年龄组的小鼠的盲肠样品中,对这些吲哚-骨干代谢产物水平的体内水平进行了定量。两组之间统计上的显着差异表明年龄会影响微生物组组成及其产生的代谢产物。

著录项

  • 作者

    Sridharan, Gautham Vivek.;

  • 作者单位

    Tufts University.;

  • 授予单位 Tufts University.;
  • 学科 Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 234 p.
  • 总页数 234
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号