首页> 外文学位 >Numerical Study of Oxidation in Stainless Steel Alloy EP-823 by Liquid Lead-Bismuth Eutectic
【24h】

Numerical Study of Oxidation in Stainless Steel Alloy EP-823 by Liquid Lead-Bismuth Eutectic

机译:液态铅-铋共晶氧化不锈钢合金EP-823的数值研究

获取原文
获取原文并翻译 | 示例

摘要

The oxidation of stainless steel is influenced by the presence of oxygen in the surrounding medium; the oxygen reacts with the alloy to form an oxide. In certain environments, such as nuclear reactor coolant systems, minimal oxidation of the stainless steel containment functions as a protective shield from corrosive coolants such as liquid lead-bismuth eutectic.;In the current study, this minimal oxidation is evaluated for a system in which corrosion-resistant stainless steel alloy EP-823 is subject to an environment of flowing oxygenated liquid lead-bismuth eutectic at a temperature of 743 K, whereby the thickness of the forming oxide layer is attributed to diffusion of oxygen within a plane comprised of the alloy. Fick's second law of diffusion and the advection-diffusion equation in one spatial dimension are utilized as the mathematical model. The diffusion problem attributed to the oxidation of metal alloys introduces complications in the domain due to: the change in density as the oxide is formed, the discontinuity in diffusion coefficients between the oxide and metal phases, and the occurrence of two moving boundaries---one separating the oxide and metal phase and the other, the interior unexposed boundary. These complications are resolved by transformations of: the space coordinate of the interface boundary, the calculating space coordinate, and the space coordinate of interior moving boundary. Hereby, the domain of the mathematical model is fixed. The discontinuity of the diffusion coefficients at the phase boundary is resolved by a final transformation.;The implicit numerical scheme applied to the mathematical model is described. This method, termed the 'enthalpy method', is typically used for moving boundary phase change problems. The implemented Newton-Raphson iterative technique for this finite difference method and the solution by a tri-diagonal matrix algorithm are also described.;Input parameters for the numerical simulation are derived both from physical assumptions and from controlled experiments of the oxidation of EP-823 alloy, which had been previously determined an optimal corrosion-resistant steel. Such parameters include the concentration of oxygen at interface, which is determined by considering the solubility of oxygen in EP-823 alloy. The effective oxidation of the alloy is studied by assessing the oxidation of the alloys component metals. The plausible oxidation reactions and resulting oxides are compiled based on partial pressure of oxygen in lead-bismuth eutectic, temperature, and free energy of formation of the relevant oxides. Hereby, input parameters such as mass fraction of the metal in its component oxide and density of the metal were obtained. The experimentally determined scale removal rate was also used as an input. The diffusivity of oxygen in the oxide and metal phases was estimated based on the physical assumptions of higher porosity in the oxide phase.;The numerical results, which are in the form of the oxygen concentration profiles as a function distance from the calculating space coordinate at varying time intervals, contain the calculated corresponding oxide layer thicknesses. The results are fit to a parabolic growth rate law, whereby the growth rate, kp, of each relevant oxide is determined. The growth of copper (I) oxide, aluminum (III) oxide, niobium (II) oxide, and tungsten (IV) oxide demonstrate good adherence to the parabolic rate law. The numerical kp values are benchmarked with the experimental effective kp value for EP-823. It is determined that the experimental kp value is closest to the numerically determined kp values of aluminum (III) oxide and niobium (II) oxide.;From the kp values, the steady state thickness of each oxide, deltas, is derived by the Tedmon model for oxidation-ablation. These values are benchmarked with the semi-empirically determined steady state thickness from the mentioned controlled experiments, which is 35.8 microm, and which is found to be closest to the numerically determined deltas value for niobium (II) oxide, at 20.1 microm.;In order to ascertain the numerically determined kp and deltas values, further work in assessing and optimizing stability and convergence criteria must be done.;The Pilling-Bedworth ratio for the alloying metal oxides is also calculated. The ratios suggest that aluminum (III) oxide and niobium (II) oxide, for which the respective ratios are 1.27 and 1.37, are the most stable relative to the oxides of the other alloying metals.;Furthermore, by considering selective oxidation of alloying metals, co-precipitation, oxidation states of the metals, crystal structure, and ionic radii, the likelihood of the participation of certain alloying elements in the effective oxide layer can be gauged.;Thus, it is determined that the one-dimensional planar oxidation model can be effective as a preliminary tool in assessing the oxidation of the alloy in terms of participation of its component metals. Hereby, the objectives of the study are met.
机译:不锈钢的氧化受周围介质中氧气的存在影响。氧与合金反应形成氧化物。在某些环境中,例如核反应堆冷却剂系统,不锈钢容器的最小氧化作用可作为对腐蚀性冷却剂(例如液态铅-铋共晶)的防护罩;在当前研究中,对这种最小氧化作用的评估是针对其中耐腐蚀不锈钢合金EP-823在743 K的温度下处于流动的氧化液体铅-铋共晶环境中,因此,形成的氧化层的厚度归因于氧气在合金构成的平面内的扩散。利用Fick的第二扩散定律和一维空间的对流扩散方程作为数学模型。金属合金氧化引起的扩散问题在以下领域带来了复杂性:由于氧化物形成时密度的变化,氧化物和金属相之间扩散系数的不连续性以及两个移动边界的出现-一个分隔氧化物和金属相,另一个分隔内部未暴露的边界。这些复杂性可以通过以下方法解决:界面边界的空间坐标,计算空间坐标和内部移动边界的空间坐标。因此,数学模型的域是固定的。通过最终变换解决了相界处扩散系数的不连续性。;描述了应用于数学模型的隐式数值格式。这种方法称为“焓法”,通常用于解决移动边界相变问题。还描述了该有限差分法的牛顿-拉夫森迭代技术的实现方法,以及三对角矩阵算法的求解方法。数值模拟的输入参数是从物理假设和EP-823氧化的受控实验中得出的合金,以前已确定是一种最佳的耐腐蚀钢。这些参数包括界面处的氧气浓度,这是通过考虑氧气在EP-823合金中的溶解度来确定的。通过评估合金成分金属的氧化来研究合金的有效氧化。根据铅-铋共晶中氧的分压,温度和相关氧化物形成的自由能,对可能的氧化反应和生成的氧化物进行编辑。由此,获得输入参数,例如金属在其组分氧化物中的质量分数和金属的密度。实验确定的除垢率也用作输入。氧在氧化物和金属相中的扩散系数是根据氧化物相中较高孔隙度的物理假设估算的;数值结果以氧浓度分布曲线形式表示为距计算空间坐标的函数距离变化的时间间隔,包含计算出的相应氧化物层厚度。结果符合抛物线增长率法则,从而确定每种相关氧化物的增长率kp。氧化铜(I),氧化铝(III),铌(II)和钨(IV)的生长表现出对抛物线速率定律的良好依从性。数值kp值以EP-823的实验有效kp值为基准。确定实验kp值最接近于数值确定的氧化铝(III)氧化物和铌(II)氧化物的kp值;根据kp值,Tedmon得出每种氧化物的稳态厚度δ烧蚀模型。这些值以上述控制实验的半经验确定的稳态厚度为基准,该厚度为35.8微米,发现最接近数值确定的氧化铌(II)的δ值,为20.1微米。为了确定在数值上确定的kp和δ值,必须在评估和优化稳定性和收敛标准方面做进一步的工作。;还计算了合金化金属氧化物的Pilling-Bedworth比。这些比率表明,相对于其他合金金属的氧化物,铝(III)氧化物和铌(II)氧化物的比率相对于其他合金金属最稳定。(此外,考虑到合金金属的选择性氧化) ,共沉淀,金属的氧化态,晶体结构和离子半径,可以测量某些合金元素参与有效氧化物层的可能性。因此,确定了一维平面氧化模型可以作为评估合金成分金属参与程度的初步工具而有效。特此,研究目标得以实现。

著录项

  • 作者

    Palaparty, Rajyalakshmi.;

  • 作者单位

    University of Nevada, Las Vegas.;

  • 授予单位 University of Nevada, Las Vegas.;
  • 学科 Materials science.;Mechanical engineering.
  • 学位 M.S.
  • 年度 2018
  • 页码 71 p.
  • 总页数 71
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号