首页> 外文学位 >Protein targeting and translocation in Escherichia coli: LacZ fusions reveal a function for proto-oncogene homologues, a new effect of antibiotics and details of outer membrane biogenesis.
【24h】

Protein targeting and translocation in Escherichia coli: LacZ fusions reveal a function for proto-oncogene homologues, a new effect of antibiotics and details of outer membrane biogenesis.

机译:大肠杆菌中的蛋白质靶向和易位:LacZ融合蛋白揭示了原癌基因同源物的功能,抗生素的新作用以及外膜生物发生的细节。

获取原文
获取原文并翻译 | 示例

摘要

Protein translocation is a fundamental process common to all living cells. It is essential for the delivery of extra-cytoplasmic proteins to their final destination. Facilitating this process is an evolutionarily-conserved protein complex called Sec complex in prokaryotes. The core Sec complex of Escherichia coli consists of the membrane proteins SecYEG, where SecY forms the main channel. Most secreted proteins are translocated post-translationally while some, primarily inner membrane proteins, are translocated while they are synthesized on the ribosome. In both cases, extra-cytoplasmic proteins are initially directed to the Sec machinery via their amino-terminal signal sequence. When the signal sequence of the outer membrane protein LamB is fused to the cytoplasmic reporter protein LacZ, the resulting hybrid is targeted for post-translational translocation. However, rapid folding of the LacZ segments in the cytoplasm prevents efficient translocation of the hybrid resulting in jamming of SecY.;The secretion stress exerted by the LamB-LacZ hybrid results in sensitivity to its inducer, maltose. Our lab previously isolated dominant mutations in cpxA that suppress this sensitivity. These mutations, called cpxA*, result in activation of an envelope stress response that results in translocation of LamB-LacZ to the periplasm. The next question was the identity of the Cpx-regulated factor(s) that enabled translocation of the hybrid. The first part of this thesis describes the identification and activity of YccA, a Cpx-induced protein capable of relieving LacZ hybrid jamming.;It has long been thought that the toxicity of the LamB-LacZ hybrid was due to jamming of the Sec machinery preventing secretion. We have shown that the toxicity is actually due to proteolytic destruction of SecY by the highly conserved protease, FtsH. We believe that folded LacZ sequences do not simply jam SecY but in fact slow translocation of LamB-LacZ greatly. Results presented in this work suggest that cells sense these struggling translocators and destroy them. Furthermore, our work shows that increased levels of YccA protect SecY from degradation by FtsH.;Interestingly, YccA is homologous to human Bax Inhibitor-1 (BI-1), an anti-apoptotic protein that restrains the activity of the tumor-suppressor, Bax. BI-1 is over-expressed in various types of cancer. Despite its obvious importance, the mechanism of BI-1 action remains unknown. We hope that further elucidating the YccA quality control mechanism will shed light on the function of this important cell death regulator in humans.;Agents that inhibit translation elongation result in translocators that are jammed by co-translationally translocated proteins fused to a ribosome by an unhydrolyzed tRNA. This report describes how antibiotics that block translation elongation cause proteolytic destruction of SecY while antibiotics that affect other stages of gene expression do not. Our results reveal a new activity for several old antibiotics and may help explain a decades-old puzzle of why antibiotics that inhibit translation elongation exhibit bactericidal effects much sooner in some bacteria than in others.;Lastly, this report describes biochemical evidence for coordination between the Sec complex and the beta-barrel assembly machinery (BAM) complex. The BAM complex of the outer membrane is responsible for assembling proteins into the outer membrane. Like the Sec complex, components of the BAM complex are highly conserved and found in mitochondria and chloroplasts. We show that, similar to protein targeting in mitochondria, the targeting of proteins to the outer membrane of E. coli via the Sec and BAM complexes occurs concurrently.;There are many powerful tools at our disposal for studying bacteria, especially E. coli, the most widely-used organism in molecular genetics. Given the remarkable conservation of many cellular processes, it seems only logical to make use of such a vast arsenal of tools, not to mention the encyclopedia of knowledge already available about model organisms, when attempting to decipher a disease process. This work provides an example of how bacteria can be used to investigate many problems, such as cancer, that might otherwise seem to have little connection to them.
机译:蛋白质移位是所有活细胞共有的基本过程。这对于将胞外蛋白传递到其最终目的地至关重要。促进这一过程的是原核生物中一种进化上保守的蛋白质复合物,称为Sec复合物。大肠杆菌的核心Sec复合物由膜蛋白SecYEG组成,其中SecY构成主要通道。大多数分泌的蛋白质在翻译后易位,而一些(主要是内膜蛋白)在核糖体上合成时易位。在这两种情况下,胞质外蛋白最初都是通过其氨基末端信号序列导向Sec机制的。当将外膜蛋白LamB的信号序列与细胞质报道蛋白LacZ融合时,所得杂交体将被定位为翻译后易位。然而,LacZ片段在细胞质中的快速折叠会阻止杂种的有效移位,从而导致SecY受到干扰。LamB-LacZ杂种产生的分泌压力导致对其诱导物麦芽糖的敏感性。我们的实验室以前在cpxA中分离了显性突变,从而抑制了这种敏感性。这些称为cpxA *的突变导致包膜应力反应的激活,从而导致LamB-LacZ易位至周质。下一个问题是使杂种易位的Cpx调节因子的身份。本论文的第一部分描述了YccA的鉴定和活性,YpxA是Cpx诱导的能够缓解LacZ杂种干扰的蛋白。长期以来,人们一直认为LamB-LacZ杂种的毒性是由于Sec机械的干扰导致的。分泌。我们已经表明,毒性实际上是由于高度保守的蛋白酶FtsH对SecY的蛋白水解破坏所致。我们认为,折叠的LacZ序列不仅会干扰SecY,而且实际上会大大延迟LamB-LacZ的易位。这项工作中提出的结果表明,细胞会感觉到这些挣扎的转运子并摧毁了它们。此外,我们的工作表明,YccA水平的升高可保护SecY免受FtsH的降解。有趣的是,YccA与人类Bax Inhibitor-1(BI-1)(一种抑制肿瘤抑制物活性的抗凋亡蛋白)同源,巴克斯BI-1在各种类型的癌症中均过表达。尽管其明显的重要性,BI-1行动的机制仍然未知。我们希望进一步阐明YccA质量控制机制将阐明这种重要的细胞死亡调节剂在人类中的功能。抑制翻译延伸的试剂导致易位子被未水解的与核糖体融合的共翻译易位蛋白阻塞tRNA。该报告描述了阻断翻译延长的抗生素如何引起SecY的蛋白水解破坏,而影响基因表达其他阶段的抗生素却没有。我们的结果揭示了几种旧抗生素的新活性,并且可能有助于解释数十年来的谜题,即为什么抑制翻译延伸的抗生素在某些细菌中比其他细菌更早地表现出杀菌作用。秒复合体和β-桶组装机械(BAM)复合体。外膜的BAM复合物负责将蛋白质组装到外膜中。像Sec复合物一样,BAM复合物的成分是高度保守的,存在于线粒体和叶绿体中。我们证明,与线粒体中的蛋白质靶向相似,蛋白质通过Sec和BAM复合物靶向大肠杆菌外膜的过程也同时发生。;我们有许多强大的工具可用于研究细菌,尤其是大肠杆菌,分子遗传学中使用最广泛的生物。考虑到许多细胞过程的显着保护,在尝试破译疾病过程时,利用如此庞大的工具库似乎是合乎逻辑的,更不用说已经有关于模型生物的知识百科全书了。这项工作提供了一个示例,说明如何使用细菌来调查许多问题,例如癌症,否则这些问题似乎与它们之间几乎没有联系。

著录项

  • 作者

    van Stelten, Johna Jane.;

  • 作者单位

    Princeton University.;

  • 授予单位 Princeton University.;
  • 学科 Biology Microbiology.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 208 p.
  • 总页数 208
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号