首页> 外文学位 >The Biology of Anticodon Stem-Loop Modifications of Yeast tRNAs
【24h】

The Biology of Anticodon Stem-Loop Modifications of Yeast tRNAs

机译:酵母tRNA的反密码子茎环修饰的生物学。

获取原文
获取原文并翻译 | 示例

摘要

tRNAs play an essential role in translation by decoding mRNA codons to add the correct amino acids to the growing polypeptide chain. During biogenesis, tRNAs undergo extensive post-transcriptional modifications to ensure correct folding and high stability, and to ensure the accuracy and efficiency of translation. Modifications in the anticodon stem-loop (ASL) are highly conserved, and their lack is often associated with growth defects in the yeast Saccharomyces cerevisiae, and with human neurological or mitochondrial disorders. However, the precise function of many ASL modifications and the specificity of the corresponding modifying enzymes remain to be determined.;This thesis focused on the biology and specificity of three sets of ASL modifications in yeast tRNAs. One project focused on the importance of pseudouridine (Psi) at N38 and N39, introduced by Pus3, a modification that is found in all kingdoms of life. This work showed that the temperature sensitivity of pus3Delta mutants was primarily due to reduced function of tRNAGln(UUG), caused by the absence of Psi 38, coupled with the temperature-dependent loss of 2-thiolation at U34 that was found to occur in commonly used yeast strains. Additional experiments showed that tRNAGln(UUG) function was compromised in pus3Delta mutants at temperatures where U34 modification was intact, and showed that Pus3 also had a role in other tRNAs, including tRNATrp(CCA) and tRNALeu(CAA).;A second project focused on the substrate specificity of Trm140 for 3-methylcytidine modification. Biochemical and in vivo analysis demonstrated that Trm140 recognized its substrates by two distinct modes: tRNAThr substrates were recognized based on recognition of specific residues N35-N 36-N37 in the anticodon loop; whereas tRNASer substrates were recognized by interaction with seryl-tRNA synthetase, and through the variable loop of the tRNA.;A third project focused on why lack of 2'-O-methylation at C32 and N34, introduced by Trm7/FTSJ1, causes a severe growth defect in yeast and X-linked intellectual disability in humans. Several lines of genetic evidence were presented indicating that the trm7 Delta growth defect in S. cerevisiae was caused by reduced tRNAPhe charging and the consequent activation of the general amino acid control response, which appeared to be conserved in distantly related organisms, including Schizosaccharomyces pombe. .
机译:tRNA通过解码mRNA密码子将正确的氨基酸添加到不断增长的多肽链中,从而在翻译中发挥重要作用。在生物发生过程中,tRNA经历了广泛的转录后修饰,以确保正确折叠和高稳定性,并确保翻译的准确性和效率。反密码子茎环(ASL)中的修饰是高度保守的,其缺失通常与酿酒酵母中的生长缺陷以及人类神经或线粒体疾病有关。然而,许多ASL修饰的精确功能和相应修饰酶的特异性仍有待确定。本文主要研究酵母tRNA中三套ASL修饰的生物学特性和特异性。 Pus3提出了一个项目,重点研究N38和N39上假尿苷(Psi)的重要性,Pus3是在所有生命王国中都发现的一种修饰。这项工作表明pus3Delta突变体的温度敏感性主要归因于tRNAGln(UUG)的功能降低,这是由于缺乏Psi 38引起的,再加上温度依赖性的U34上2-硫代化的损失,这种现象通常发生在用过的酵母菌株。其他实验表明,在U34修饰完整的温度下,pus3Delta突变体中的tRNAGln(UUG)功能受到损害,并显示Pus3在其他tRNA中也有作用,包括tRNATrp(CCA)和tRNALeu(CAA)。 Trm140对3-甲基胞苷修饰的底物特异性生化和体内分析表明,Trm140通过两种不同的模式识别其底物:基于对反密码子环中特定残基N35-N 36-N37的识别,识别tRNAThr底物;而tRNASer底物是通过与丝氨酰tRNA合成酶的相互作用以及通过tRNA的可变环而被识别的。第三个项目着眼于为何Trm7 / FTSJ1引入的C32和N34缺少2'-O-甲基化会导致严重的酵母菌生长缺陷和人类X连锁智力障碍。提出了几条遗传学证据,表明酿酒酵母中的trm7 Delta生长缺陷是由降低的tRNAPhe电荷和随后的一般氨基酸控制反应的激活引起的,这似乎在远缘相关生物(包括粟酒裂殖酵母)中是保守的。 。

著录项

  • 作者

    Han, Lu.;

  • 作者单位

    University of Rochester.;

  • 授予单位 University of Rochester.;
  • 学科 Biochemistry.
  • 学位 Ph.D.
  • 年度 2018
  • 页码 201 p.
  • 总页数 201
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号