首页> 外文学位 >Molecular interactions between the transcription factor Crl and sigma s RNA polymerase holoenzyme in Escherichia coli.
【24h】

Molecular interactions between the transcription factor Crl and sigma s RNA polymerase holoenzyme in Escherichia coli.

机译:大肠杆菌中转录因子Crl和s s RNA聚合酶全酶之间的分子相互作用。

获取原文
获取原文并翻译 | 示例

摘要

Bacteria must change their cellular composition in response to changing environmental conditions and stress. They implement these changes by altering gene expression and/or protein activity. Central to changes in gene expression during stress responses is regulation of transcription. In bacteria, transcription is directed by a suite of RNA polymerase (RNAP) holoenzymes, comprised of a core enzyme, possessing the catalytic activity for RNA synthesis, and one of a collection of transcription initiation factors, known as σ factors, which recognizes promoter DNA sequences upstream of genes. Increasing the formation of a particular type of RNAP holoenzyme by switching the σ factor will lead to expression of its cognate regulon. My thesis research focuses on deciphering the complex molecular interactions between the transcription factor Crl and the general stress response sigma factor, Sigma S, in order to understand Escherichia coli's response to stress at the molecular level. Crl is a small (133 amino acids in E. coli) protein that stimulates transcription mediated by Sigma S. At the outset of my research, little was known about how Crl interacts with the transcription machinery to stimulate Sigma S-mediated transcription. I used a combination of biochemical, genetic, and molecular biological techniques in vitro and in vivo to identify key interactions and gain insight into the mechanism of transcriptional regulation by Crl. I identify a key binding determinant (the DPE motif) in Sigma S conserved domain 2 underlying its specific recognition by Crl. I demonstrate directly that Crl requires this determinant for positive regulation of Sigma S-mediated transcription and to enhance Sigma S holoenzyme formation. I made the primary Sigma factor recognizable by Crl by substitution of the DPE motif along with deletion of a large non-conserved region (NCR). I also localized the area of Crl required for the interaction with Sigma S to Crl's conserved central cleft. Finally, I identified an interaction between the Beta prime subunit of core RNAP and Crl, which occurs only in the context of the holoenzyme, that has begun to clarify the mechanism by which Crl functions as a Sigma S-specific RNAP holoenzyme assembly factor.
机译:细菌必须响应不断变化的环境条件和压力而改变其细胞组成。他们通过改变基因表达和/或蛋白质活性来实现这些变化。应激反应期间基因表达变化的核心是转录调控。在细菌中,转录是由一套RNA聚合酶(RNAP)全酶指导的,该酶由核心酶组成,具有用于RNA合成的催化活性,以及​​转录启动因子的集合之一,称为σ因子,可识别启动子DNA。基因上游的序列。通过切换σ因子来增加特定类型的RNAP全酶的形成将导致其同源调节子的表达。我的论文研究集中在解读转录因子Crl与一般应激反应sigma因子Sigma S之间的复杂分子相互作用,以了解大肠杆菌在分子水平上对应激的反应。 Crl是一种小蛋白质(在大肠杆菌中有133个氨基酸),可刺激Sigma S介导的转录。在我的研究之初,对Crl如何与转录机制相互作用以刺激Sigma S介导的转录知之甚少。我在体外和体内使用了生化,遗传和分子生​​物学技术的组合来识别关键相互作用并深入了解Crl的转录调控机制。我在Sigma S保守结构域2中确定了一个关键的结合决定簇(DPE基序),该结构域被Crl特异性识别。我直接证明了Crl需要此决定簇来积极调节Sigma S介导的转录并增强Sigma S全酶的形成。我通过替换DPE基序以及删除一个大的非保守区(NCR),使Crl识别出主要的Sigma因子。我还将与Sigma S相互作用所需的Crl区域定位到了Crl保守的中央裂口。最后,我确定了核心RNAP的Beta主要亚基与Crl之间的相互作用,这种相互作用仅在完整酶的背景下发生,这已经开始阐明Crl作为Sigma S特异性RNAP全酶装配因子起作用的机制。

著录项

  • 作者

    Banta, Amy Beth.;

  • 作者单位

    The University of Wisconsin - Madison.;

  • 授予单位 The University of Wisconsin - Madison.;
  • 学科 Biology Molecular.;Biology Microbiology.;Biology Genetics.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 316 p.
  • 总页数 316
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号