首页> 外文学位 >A Three-Layered System Level Modeling Approach to Electric Transportation.
【24h】

A Three-Layered System Level Modeling Approach to Electric Transportation.

机译:电力运输的三层系统级建模方法。

获取原文
获取原文并翻译 | 示例

摘要

Transportation electrification offers solutions to an array of current societal issues, ranging from unstable oil prices to environmental concerns. The promised cost-savings prompt a growing interest to push Electric Vehicles (EVs) into the market. On the other hand, the all-electric-range of current EVs is relatively short compared to gas powered competitors, while the need for longer travel ranges requires development of a network of public fast charging facilities. Hence the envisioned change demands synchronized deployment of new vehicles and infrastructure on a massive scale. However, the required upgrades are very costly and straining the grid beyond its limits could easily lead to cascading failures and outages.;In this thesis we propose a three layered system level modeling approach to electric transportation. First layer (Design) includes the stochastic modeling of a single charging station architecture. Proposed charging station architecture ensures grid reliability at all times while sacrificing to reject small amount of EVs defined as the Quality-of-Service (QoS). First half of this layer explores the system dynamics and solves the optimal energy storage sizing problem respect to QoS targets. Second part of the Design layer examines how the charging station performance is affected both by the energy storage technology used, and the employed charging strategy.;Second Layer (Control) considers control and coordination of customer chargings in a network of fast charging stations. Acknowledging the fact that the non-uniform spatial distribution of EVs creates uneven power demand at each charging facility, the goals of the proposed control mechanism are threefold: (i) avoid straining power grid resources, (ii) increase the percentage of served customers with the same amount of grid resources and consequently maximize the revenue of charging facilities operator, and (iii) provide charging service to customers with a certain level of QoS. We further divide Control layer into two; control for (1) cooperative EV fleets and (2) selfish drivers.;Third Layer (Communications) binds the customers to the charging infrastructure. We explore the communication requirements of EV charging requirements. In order to quantify the communications system performance, we propose a Markov-Modulated Poisson Process based model. Further, we show that as the EV population increases, the network operators will need better communications technology to handle additional demand.;We further extend our modeling approach to resource provisioning in large scale public charging stations. Acknowledging the fact that the current generation capacity could be a bottleneck during the busy hours, we present a capacity planning framework by exploiting the statistical behavior of customers. We modeled the customer demand at each charging slot with an On-Off process. Then, we introduced the concept of "effective power" that is strictly less than the peak power demand during On periods. This notion significantly reduced the required power resources when compared to the capacity planning approach based on peak demand.
机译:运输电气化为各种当前的社会问题提供了解决方案,从不稳定的油价到环境问题,不一而足。节省成本的承诺促使人们越来越有兴趣将电动汽车(EV)推向市场。另一方面,与汽油驱动的竞争对手相比,当前电动汽车的全电动范围相对较短,而对更长行驶距离的需求则需要发展公共快速充电设施网络。因此,预期的变化要求大规模同步部署新车辆和基础设施。但是,所需的升级非常昂贵,并且使电网承受的压力超过其极限很容易导致级联故障和停电。;本文提出了一种用于电力运输的三层系统级建模方法。第一层(设计)包括单个充电站架构的随机建模。拟议的充电站架构可始终确保电网可靠性,同时牺牲拒绝被定义为服务质量(QoS)的少量EV。该层的上半部分探讨了系统动力学,并针对QoS目标解决了最佳的能量存储大小确定问题。设计层的第二部分检查了所使用的储能技术和所采用的充电策略如何影响充电站的性能。第二层(控制)考虑快速充电站网络中客户充电的控制和协调。认识到电动汽车的空间分布不均匀会在每个充电设施上造成不均衡的电力需求这一事实,拟议的控制机制的目标是三方面的:(i)避免拉紧电网资源,(ii)通过以下方式增加服务客户的比例:相同数量的网格资源,从而使充电设施运营商的收入最大化,并且(iii)为具有一定QoS水平的客户提供充电服务。我们进一步将控制层分为两层。 (1)协作电动车队和(2)自私驾驶员的控制。第三层(通信)将客户绑定到充电基础设施。我们探讨了电动汽车充电要求的沟通要求。为了量化通信系统的性能,我们提出了一种基于马尔可夫调制泊松过程的模型。此外,我们表明随着电动汽车数量的增加,网络运营商将需要更好的通信技术来满足额外的需求。我们进一步将建模方法扩展到大型公共充电站的资源配置。认识到当前容量可能是繁忙时段的瓶颈这一事实,我们通过利用客户的统计行为提出了容量规划框架。我们使用开/关流程对每个充电插槽的客户需求进行建模。然后,我们引入了“有效功率”的概念,该概念严格小于接通期间的峰值功率需求。与基于峰值需求的容量规划方法相比,此概念大大减少了所需的电源。

著录项

  • 作者

    Bayram, Islam Safak.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Engineering Electronics and Electrical.;Engineering Computer.;Engineering Automotive.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 160 p.
  • 总页数 160
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号