首页> 外文学位 >Geomechanical development of fractured reservoirs during gas production .
【24h】

Geomechanical development of fractured reservoirs during gas production .

机译:天然气生产中裂缝性储层的地质力学发展。

获取原文
获取原文并翻译 | 示例

摘要

Within fractured reservoirs, such as tight gas reservoir, coupled processes between matrix deformation and fluid flow are very important for predicting reservoir behavior, pore pressure evolution and fracture closure. To study the coupling between gas desorption and rock matrix/fracture deformation, a poroelastic constitutive relation is developed and used for deformation of gas shale. Local continuity equation of dry gas model is developed by considering the mass conservation of gas, including both free and absorbed phases. The absorbed gas content and the sorption-induced volumetric strain are described through a Langmiur-type equation. A general porosity model that differs from other empirical correlations in the literature is developed and utilized in a finite element model to coupled gas diffusion and rock mass deformation.;The dual permeability method (DPM) is implemented into the Finite Element Model (FEM) to investigate fracture deformation and closure and its impact on gas flow in naturally fractured reservoir. Within the framework of DPM, the fractured reservoir is treated as dual continuum. Two independent but overlapping meshes (or elements) are used to represent these kinds of reservoirs: one is the matrix elements used for deformation and fluid flow within matrix domain; while the other is the fracture element simulating the fluid flow only through the fractures. Both matrix and fractures are assumed to be permeable and can accomodate fluid transported. A quasi steady-state function is used to quantify the flow that is transferred between rock mass and fractures. By implementing the idea of equivalent fracture permeability and shape-factor within the transfer function into DPM, the fracture geometry and orientation are numerically considered and the complexity of the problem is well reduced. Both the normal deformation and shear dilation of fractures are considered and the stress-dependent fracture aperture can be updated in time.;Further, a non-linear numerical model is constructed by implementing a poroviscoelastic model into the dual permeability (DPM)-finite element model (FEM) to investigate the coupled time-dependent viscoelastic deformation, fracture network evolution and compressible fluid flow in gas shale reservoir. The viscoelastic effect is addressed in both deviatoric and symmetric effective stresses to emphasize the effect of shear strain localization on fracture shear dilation. The new mechanical model is first verified with an analytical solution in a simple wellbore creep problem and then compared with the poroelastic solution in both wellbore and field cases.
机译:在裂缝性储层(例如致密气藏)中,基质变形与流体流动之间的耦合过程对于预测储层行为,孔隙压力演化和裂缝闭合非常重要。为了研究瓦斯解吸与岩石基质/裂缝变形之间的耦合关系,建立了孔隙弹性本构关系并将其用于瓦斯页岩变形。通过考虑气体的质量守恒,包括游离相和吸收相,建立了干气模型的局部连续性方程。吸收的气体含量和吸收引起的体积应变通过Langmiur型方程式描述。建立了不同于文献中其他经验相关性的通用孔隙度模型,并将其用于有限元模型中以耦合气体扩散和岩体变形。;将双重渗透率方法(DPM)应用于有限元模型(FEM)中研究裂缝变形和闭合及其对天然裂缝储层中气体流动的影响。在DPM框架内,将裂缝性储层视为双重连续体。两个独立但重叠的网格(或单元)被用来表示这些类型的储层:一个是用于矩阵域内的变形和流体流动的矩阵单元;另一个是矩阵单元。另一个是仅模拟裂缝中流体流动的裂缝单元。假定基质和裂缝都是可渗透的,并且可以容纳流体。准稳态函数用于量化在岩体和裂缝之间传递的流量。通过在DPM传递函数中实现等效的裂缝渗透率和形状因数的想法,可以在数值上考虑裂缝的几何形状和方向,并大大降低了问题的复杂性。同时考虑了裂缝的正向变形和剪切膨胀,并可以及时更新应力相关的裂缝孔径。此外,通过将孔隙黏弹性模型应用于双渗透率(DPM)-有限元,构造了非线性数值模型。模型(FEM)来研究气页岩储层中随时间变化的粘弹性变形,裂缝网络演化和可压缩流体流动。在偏向有效应力和对称有效应力中均解决了粘弹性效应,以强调剪切应变局部化对断裂剪切扩张的影响。首先在简单的井眼蠕变问题中使用解析解验证了新的力学模型,然后在井眼和现场案例中将其与多孔弹性解进行了比较。

著录项

  • 作者

    Huang, Jian.;

  • 作者单位

    Texas A&M University.;

  • 授予单位 Texas A&M University.;
  • 学科 Engineering Petroleum.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 286 p.
  • 总页数 286
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号