首页> 外文学位 >Soil organic matter and soil microbial communities in long-term and transitional crop and forage production systems in eastern Wyoming.
【24h】

Soil organic matter and soil microbial communities in long-term and transitional crop and forage production systems in eastern Wyoming.

机译:怀俄明州东部长期和过渡性作物和牧草生产系统中的土壤有机质和土壤微生物群落。

获取原文
获取原文并翻译 | 示例

摘要

Agricultural systems that meet food and fiber requirements, meet economic goals and maintain agro-ecosystem resilience are valuable in marginally productive semi-arid and cold agroecosystems of the central High Plains of the USA. We (1) reviewed the opportunities and challenges associated with implementing long-term integrated crop and crop-livestock production systems in the central High Plains, (2) evaluated soil organic matter (SOM) and microbial community structure in conventional, organic and reduced-tillage management approaches for cash-crop and forage production systems in irrigated rotations at the Sustainable Agriculture Research and Extension Center near Lingle, Wyoming, and (3) measured the changes in SOM as influenced by long-term historic, conventional, reduced-tillage and no-tillage crop rotations and permanent grasses under the conservation reserve program (CRP) in drylands of eastern Wyoming and western Nebraska, USA.;Review of literature from long-term integrated cash-crop and integrated crop-livestock production systems (Chapter I) revealed that alternative management approaches that include reduced-tillage, certified organic management, or integrating livestock into cropping systems significantly improve soil quality and increase crop production in High Plains region.;On-station evaluation of cash-crop and forage production systems in irrigated rotation during 2009-2012 (Chapter II-V) revealed that organic and reduced-tillage management substantially increased quantity and improved quality of SOM compared to the conventional management approach. Crop rotations combined with alternative management strategies significantly increased the mineralizable, dissolved and microbial biomass SOM. Labile-pool SOM was two to five times greater and microbial biomass assessed using a phospholipid fatty acid analysis (PLFA) was up to 36 times greater in the fourth year of crop rotation than in the first year. The experimental field was under continuous corn for six years prior to the establishment of the experiment. In the cash-crop production system, organic management that included more legume crops and application of manures accrued in the greatest amount of labile SOM and microbial biomass. With the same crop rotations in the forage production systems, the response of reduced soil disturbance was more prevalent than the other management changes. Evaluation of the diversity and relative abundance of nitrogen (N) fixing bacteria (via nifH gene sequencing) revealed significant difference in the relative abundance of N-fixing bacterial phyla. The relative abundance of N-fixing bacteria in the bacterial phyla Proteobacteria, Acidobacteria, Actinobacteria, Bacteroidetes and Verrucomicrobia varied significantly with crop rotations and management differences. The root biomass, root biomass carbon (C) and N measured only in forage production systems also followed the similar trend as labile C and microbial biomass.;On-farm study of soil organic carbon (SOC) and N in drylands winter wheat production in eastern Wyoming and western Nebraska (VI) indicated significant increase in SOC and N near soil surface as a result of reduced soil disturbance, reduced fallow period and diversified crop rotations. The conventional wheat-fallow rotations that included inputs of fertilizers, however, promoted greater amount of SOC in the 30-60 cm depth.;In conclusion, minimum soil disturbance, more intensive crop rotation and use of organic amendments significantly influence sustainability and resilience of integrated cropping systems and integrated crop-livestock systems. A greater magnitude of change in SOM and microbial properties than previously reported indicates the greater potential for SOC and N sequestration in cold and dry ecosystems with low inherent fertility status than more humid and warmer region.
机译:满足食物和纤维需求,达到经济目标并保持农业生态系统适应力的农业系统在美国中部高平原的边际半干旱和寒冷农业生态系统中很有价值。我们(1)回顾了在中部高平原地区实施长期一体化作物和农作物生产系统的机遇与挑战,(2)评估了常规,有机和低耗土壤中的土壤有机质(SOM)和微生物群落结构怀俄明州灵格市附近的可持续农业研究与推广中心的灌溉轮作中的农作物和牧草生产系统的耕作管理方法,以及(3)测量了长期,传统,减耕和长期耕作对SOM的影响美国怀俄明州东部和内布拉斯加州西部干旱地区的保护储备计划(CRP)下的免耕作物轮作和永久性草;对长期集成经济作物和作物-牲畜生产系统的文献综述(第一章)揭示了替代管理方法,包括耕种减少,经过认证的有机管理或将牲畜纳入耕作系统,这些意义重大在高平原地区改善土壤质量并提高作物产量。;在2009-2012年间对灌溉轮作中的经济作物和牧草生产系统进行了现场评估(第二章至第五章),发现有机耕作和减耕管理大大增加了产量与传统的管理方法相比,SOM的质量有所提高。轮作与替代管理策略的结合显着提高了可矿化,溶解和微生物生物量的SOM。轮作第四年时,不稳定池的SOM值要高出二到五倍,而使用磷脂脂肪酸分析(PLFA)评估的微生物量要比第一年时高出36倍。在建立实验之前,在连续的玉米下进行六年的实验。在经济作物生产系统中,有机管理包括更多的豆类作物和粪肥的使用,这些有机管理产生了最多的不稳定SOM和微生物生物量。在饲草生产系统中轮作相同的作物,减少土壤干扰的反应比其他管理变化更为普遍。对固氮细菌的多样性和相对丰度的评估(通过nifH基因测序)表明,固氮细菌门的相对丰度存在显着差异。细菌轮生菌,酸性菌,放线菌,拟杆菌和拟微生物菌中固氮菌的相对丰度随作物轮作和管理差异而显着变化。仅在牧草生产系统中测得的根生物量,根生物量碳和氮也遵循与不稳定碳和微生物生物量相似的趋势。农田研究旱地冬小麦生产中的土壤有机碳和氮怀俄明州东部和内布拉斯加州西部(VI)表明,土壤扰动减少,休耕期减少和作物轮作多样化使土壤表层土壤有机碳和氮显着增加。然而,常规的小麦轮作包括肥料的投入,在30-60 cm的深度上促进了更多的SOC。总之,土壤干扰最小,更密集的作物轮作和有机改良剂的使用显着影响了玉米的可持续性和复原力。集成的种植系统和集成的作物-畜牧系统。与以前的报道相比,SOM和微生物特性的变化幅度更大,这表明与那些较湿润和温暖的地区相比,固有生育率较低的寒冷和干燥生态系统中的SOC和N固存潜力更大。

著录项

  • 作者

    Ghimire, Rajan.;

  • 作者单位

    University of Wyoming.;

  • 授予单位 University of Wyoming.;
  • 学科 Agriculture Agronomy.;Biology Ecology.;Agriculture Soil Science.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 216 p.
  • 总页数 216
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号