首页> 外文学位 >Experimental/numerical study of directional solidification using stereoscopic tracking velocimetry.
【24h】

Experimental/numerical study of directional solidification using stereoscopic tracking velocimetry.

机译:使用立体跟踪测速仪进行定向凝固的实验/数值研究。

获取原文
获取原文并翻译 | 示例

摘要

Measurement of three-dimensional (3-D) three-component velocity fields is of great importance in both terrestrial and extraterrestrial experiments for understanding materials processing and fluid physics. The experiments in these fields most likely inhibit the application of conventional planar probes for observing 3-D phenomena. Here, we present the investigation results of stereoscopic tracking velocimetry (STV) for measuring 3-D velocity fields, which include diagnostic technology development, experimental velocity measurement, and comparison with analytical and numerical computation. STV is advantageous in system simplicity for building compact hardware and in software efficiency for continual near-real-time monitoring. STV is based on stereoscopic observation of particles seeded in a flow by CCD sensors. In this approach, parts of the individual particle images that provide data points are likely to be lost or cause errors when their images overlap and crisscross each other, especially under a high particle density. In order to maximize the valid recovery of data points, neural networks are implemented for these two important processes. For the step of particle tracking, the Hopfield neural network is employed to find appropriate particle tracks based on global optimization. Our investigation indicates that the neural networks are very efficient and useful for stereoscopically tracking particles. For testing in material processing applications, a simple directional solidification apparatus is built for experimenting with a metal analog of Succinonitrile (SCN). Its 3-D velocity field at the liquid phase is then measured to be compared with those from numerical computation. As an additional effort, the numerical modeling has been investigated to study the complex flow phenomena involving free boundary problem, surface tension force, and phase change in solidification. The cross-examination of the experiments and numerical simulation has defined the appropriate steps to properly run the numerical codes, that is, to attain proper numerical solutions. The confidence on the numerical solution leads to the further investigation on the Prandtl number effects on the solidification process and the accompanying velocity field. Our theoretical, numerical, and experimental investigations have proven STV to be a viable candidate for reliably measuring 3-D flow velocities.
机译:三维(3-D)三分量速度场的测量在地面和地面实验中对于理解材料加工和流体物理学都非常重要。这些领域的实验很可能会抑制常规平面探针在观察3D现象方面的应用。在这里,我们介绍了用于测量3-D速度场的立体跟踪测速(STV)的研究结果,包括诊断技术的发展,实验速度的测量以及与分析和数值计算的比较。 STV在系统简洁性,构建紧凑型硬件方面和软件效率方面,对于持续的近实时监视均具有优势。 STV基于CCD传感器对流中播种的粒子的立体观察。在这种方法中,提供数据点的单个粒子图像的某些部分可能会丢失或导致错误,尤其是在高粒子密度下,当它们的图像相互重叠和交叉时。为了最大化数据点的有效恢复,针对这两个重要过程实施了神经网络。对于粒子跟踪,使用Hopfield神经网络基于全局优化找到合适的粒子轨道。我们的研究表明,神经网络对于立体跟踪粒子非常有效且有用。为了在材料加工应用中进行测试,构建了一个简单的定向凝固设备,用于试验丁二腈(SCN)的金属类似物。然后测量其在液相的3-D速度场,并将其与数值计算的速度场进行比较。作为一项额外的工作,已经对数值模型进行了研究,以研究涉及自由边界问题,表面张力和凝固相变的复杂流动现象。实验和数值模拟的交叉检验定义了适当的步骤,以正确运行数字代码,即获得适当的数值解。对数值解的置信度促使人们进一步研究了普朗特数对凝固过程及其伴随的速度场的影响。我们的理论,数值和实验研究都证明STV是可靠地测量3-D流速的可行候选人。

著录项

  • 作者

    Lee, David J.;

  • 作者单位

    University of Illinois at Chicago.;

  • 授予单位 University of Illinois at Chicago.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 245 p.
  • 总页数 245
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号