首页> 外文学位 >Capacitated schedule-based transit assignment using a capacity penalty cost.
【24h】

Capacitated schedule-based transit assignment using a capacity penalty cost.

机译:使用容量损失成本基于容量的基于计划的运输分配。

获取原文
获取原文并翻译 | 示例

摘要

Schedule-based transit assignment models have been studied extensively from 2000, considering more time-dependent transit passenger behavior associated with the transit schedule. Currently, transit schedule information is more easily accessed using new telecommunications systems, such as mobile devices and the internet. One critical example of information sharing is Google's General Transit Feed Specification (GTFS). The information of the schedule per se, however, is not enough to explain the transit passenger's behavior, especially in a congested transit system. Regarding the congestion issues on a transit system, numerous researches have studied a transit schedule network (Nguyen et al., 2001; Nuzzolo et al., 2001; Poon et al., 2004; Hamdouch and Lawphonpanich, 2008, 2010). Along the stream toward understanding transit passenger behavior in the capacitated transit schedule network, we propose solution models for solving the deterministic and stochastic user equilibrium (SUE) problems on a capacitated transit schedule network. Nguyen et al. (2001) introduced how the capacitated user equilibrium (UE) on a transit schedule network is different from the auto user equilibrium. For the foundation of the study, we utilize the link-based and time-expanded (LBTE) transit schedule network introduced by Noh et al. (2012a) which effectively captures turning movements like transfers easily as well as maintaining the efficient size of a schedule-based network. In the LBTE transit network, time points are assigned to each link connecting two stops by each run (or route). Utilizing the "link-based" structure, a link-based shortest path (LBSP) and hyperpath search (LBHP) models (Noh et al., 2012a) are introduced. Especially, the hyperpath employs a log-sum weighting function for incorporating multiple schedule alternatives at each stop node considering passenger's stochastic behavior. One distinctive transit passenger behavior over a congested transit system is a first-in-first-out (FIFO) priority on boarding. A passenger already on board has the higher priority than passengers who are about to boarding, and the passengers arriving earlier at a stop will have higher priority than the passengers arriving later at the stop. To consider the capacitated UE considering the relation between the FIFO boarding priority and vehicle capacity constraint, we apply a "soft-capacity" cost (Nguyen et al., 2001). This soft capacity cost function allows some violation of the predefined vehicle capacity, but the violation will be penalized and affect the cost of the path in the next iteration. The penalty of the soft capacity cost function allows not to assigning passengers on the alternatives having the lower priority of boarding, which finally leads to the solution of the capacitated transit deterministic user equilibrium (DUE) or SUE problems. For the main transit assignment models, we proposed path- and hyperpath-based methods and a self-adaptive method considering deterministic and stochastic passenger behaviors. First, we developed the hyperpath-based assignment method by Noh et al. (2012b). For the FIFO transit passenger behavior, typically accompanying asymmetric (non-separable) cost relation, we also introduce a diagonalization technique (Sheffi, 1985) with the method of successive average (MSA) assignment technique. As expecting a better performance, second, we introduced the path-based assignment models using gradient projection. For the FIFO passenger behavior on boarding, we considered the same diagonalization approach used in the hyperpath-based assignment model and a full-Hessian scaling matrix in the gradient projection. By utilizing a full path set for each O-D pair, a better performance is guaranteed with the path-based model but the diagonalization technique may result in longer iterations. For improving the diagonalization steps, third, we explored several other possible methods. Above all, we proposed the better initial solution (BIS) model which assigns the initial flows on the priority path over congested links and also maintains feasible flows below the capacity constraint. On the other hand, we also added two additional assignment models to improve the diagonalization technique. One utilizes a full Hessian scaling matrix in the proposed path-based assignment model instead of diagonalization and the other is the self-adaptive gradient projection (SAGP) model introduced by Chen et al. (2012) which does not require a scaling matrix by optimizing the step-size in the path-based projection model. For improving the SAGP model, we modified the SAGP model. First, we applied the SAGP at a disaggregate level for each O-D pair as expecting a compact set of path alternatives limited by each O-D pair, called disaggregate self-adaptive gradient projection (DSAGP). Second, we applied a type of diagonalization technique in the SAGP model by maintaining the residual capacities for the estimated flows in the next iteration. Beyond just a single model development, the proposed transit assignment models not only showed various possibilities of the transit assignment, but also showed which model is more efficient and practical in terms of a real application. A computational model structure using the proposed models was mainly designed for an effective model development by sharing numerous components as well as maintaining the efficient data structure. The nine combination models based on the proposed three main models (hyperpath- and path-based and DSAGP assignment models) and the efficient BIS technique for solving the problems were tested and analyzed on a sample network and a partial Sacramento regional transit network.
机译:自2000年以来,基于时间表的过境分配模型已经得到了广泛的研究,考虑了更多与时间相关的与时间相关的过境乘客行为。当前,使用诸如移动设备和互联网之类的新电信系统更容易访问运输时间表信息。信息共享的一个重要示例是Google的通用运输提要规范(GTFS)。然而,时间表本身的信息不足以解释过境乘客的行为,尤其是在拥挤的过境系统中。关于公交系统的拥堵问题,许多研究已经研究了公交时刻表网络(Nguyen等,2001; Nuzzolo等,2001; Poon等,2004; Hamdouch and Lawphonpanich,2008,2010)。沿着通向了解客运航班时间表网络中的过境旅客行为的思路,我们提出了用于解决客运航班时间表网络中确定性和随机用户平衡(SUE)问题的解决方案模型。 Nguyen等。 (2001年)介绍了运输调度网络上的有能力的用户均衡(UE)与自动用户均衡之间的区别。作为研究的基础,我们利用了Noh等人介绍的基于链接和时间扩展(LBTE)的运输计划网络。 (2012a)有效地捕获了转弯等转弯运动,并保持了基于计划的网络的有效规模。在LBTE公交网络中,将时间点分配给每个路线(或路线)连接两个站点的每个链接。利用“基于链接”的结构,引入了基于链接的最短路径(LBSP)和超路径搜索(LBHP)模型(Noh等人,2012a)。特别是,考虑到乘客的随机行为,超路径采用对数和加权函数以在每个停止节点处合并多个计划替代项。在拥挤的公交系统上,一个与众不同的公交乘客行为是登机时的先进先出(FIFO)优先级。已经登机的乘客比即将登机的乘客具有更高的优先级,并且较早到达停靠点的乘客将具有更高的优先级。为了考虑功能强大的UE,并考虑到FIFO登机优先级和车辆容量约束之间的关系,我们应用了“软容量”成本(Nguyen等,2001)。该软容量成本函数允许某些违反预定义车辆容量的行为,但是这种违规行为将受到处罚,并在下一次迭代中影响路径的成本。软容量成本函数的损失使得不能在登机优先级较低的候机楼上分配乘客,这最终导致解决了容量巨大的过境确定性用户平衡(DUE)或SUE问题。对于主要的公交分配模型,我们提出了基于路径和超路径的方法以及考虑确定性和随机乘客行为的自适应方法。首先,我们开发了Noh等人的基于超路径的分配方法。 (2012b)。对于先进先出乘客行为,通常伴随着不对称(不可分离的)成本关系,我们还引入了对角化技术(Sheffi,1985),采用了连续平均(MSA)分配技术。期望获得更好的性能,其次,我们引入了使用梯度投影的基于路径的分配模型。对于登机的FIFO乘客行为,我们考虑了基于超路径的分配模型中使用的对角线化方法以及梯度投影中的全黑塞斯比例矩阵。通过为每个O-D对使用完整的路径集,可以确保基于路径的模型具有更好的性能,但是对角化技术可能会导致较长的迭代。为了改善对角化步骤,第三,我们探索了其他几种可能的方法。最重要的是,我们提出了一种更好的初始解决方案(BIS)模型,该模型在拥塞链路上的优先级路径上分配初始流量,并将可行流量保持在容量约束以下。另一方面,我们还添加了两个附加的分配模型来改进对角化技术。一种是在建议的基于路径的分配模型中使用完整的Hessian缩放矩阵,而不是对角化,另一种是Chen等人引入的自适应梯度投影(SAGP)模型。 (2012年),它不需要通过优化基于路径的投影模型中的步长来缩放矩阵。为了改进SAGP模型,我们修改了SAGP模型。首先,我们期望每个O-D对在分解级别应用SAGP,这是因为期望由每个O-D对限制的紧凑路径集称为分解自适应梯度投影(DSAGP)。第二,我们在SAGP模型中应用了一种对角化技术,通过在下一次迭代中保持估计流量的剩余容量。除了一个单一的模型开发,所提出的公交分配模型不仅显示了公交分配的各种可能性,而且还显示了哪种模型在实际应用中更为有效和实用。使用所提出的模型的计算模型结构主要是通过共享大量组件以及维护有效的数据结构来进行有效的模型开发。在样本网络和部分萨克拉曼多区域性公交网络上测试和分析了基于所提出的三个主要模型(基于超路径和路径的模型以及DSAGP分配模型)的九种组合模型,以及用于解决问题的有效BIS技术。

著录项

  • 作者

    Noh, Hyunsoo.;

  • 作者单位

    The University of Arizona.;

  • 授予单位 The University of Arizona.;
  • 学科 Transportation.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 197 p.
  • 总页数 197
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号