首页> 外文学位 >The Low-Recycling Lithium Boundary and Implications for Plasma Transport.
【24h】

The Low-Recycling Lithium Boundary and Implications for Plasma Transport.

机译:低回收锂边界及其对等离子体运输的影响。

获取原文
获取原文并翻译 | 示例

摘要

Pumping of incident hydrogen and impurity ions by lithium enables control of the particle inventory and fueling profile in magnetic-confined plasmas, and may raise the plasma temperature near the wall. As a result, the density gradient is expected to contribute substantially to the free-energy, affecting particle and thermal transport from micro-turbulence which is typically the dominant transport mechanism in high-temperature fusion experiments.;Transport in gyrokinetic simulations of density-gradient-dominated profiles is characterized by a small linear critical gradient, large particle flux, and preferential diffusion of cold particles. As a result, the heat flux is below 5/2 or even 3/2 times the particle flux, usually assumed to be the minimum for convection. While surprising, this result is consistent with increasing entropy. Coupled TEM-ITG (ion-temperature-gradient) simulations using &eegr; e = &eegr;i find &eegr; = ∇ T/∇n ≈ 0.8 maximizes the linear critical pressure gradient, which suggests that experiments operating near marginal ITG stability with larger &eegr; would increase the linear critical pressure gradient by transferring free-energy from the temperature gradient to the density gradient.;Simulations were performed with profiles predicted for the Lithium Tokamak Experiment (LTX) if ion thermal transport was neoclassical, while electron thermal transport and particle transport were a fixed ratio above the neoclassical level. A robust TEM instability was found for the outer half radius, while the ITG was found to be driven unstable as well during gas puff fueling. This suggests that TEM transport will be an important transport mechanism in high-temperature low-recycling fusion experiments, and in the absence of stabilizing mechanisms, may dominate over neoclassical transport.;A diagnostic suite has been developed to measure hydrogen and impurity emission in LTX in order to determine the lower bound on recycling that can be achieved in a small tokamak using solid lithium coatings, assess its dependence on the operating condition of the lithium surface, and evaluate its impact on the discharge.;Coatings on the close-fitting stainless-steel substrate produce a significant reduction in recyling, so that the effective particle confinement times are as low as ≲ 1 ms. Measurements of particle inventory in the plasma and hydrogen Lyman-&agr; emission indicate that hydrogen recycling at the surface increases as subsequent discharges are performed; nevertheless, strong pumping of hydrogen is observed even after almost double the cumulative fueling is applied that should saturate the lithium coating to the penetration depth of hydrogen ions.;Probe measurements show that when external fueling is terminated, the scrape-off-layer of discharges with fresh coatings decays to lower density and rises to higher electron temperature than for discharges with a partially-passivated surface, consistent with reduced edge cooling from recycled particles. Near the end of the discharge, higher plasma current correlates with reduced t*p and hydrogen emission, suggesting that discharges with fresh coatings achieve higher electron temperature in the core.;A novel approach using neutral modeling was developed for the inverse problem of determining the distribution of recycled particle flux from PFC surfaces given a large number of emission measurements, revealing that extremely low levels of recycling (Rcore∼0.6 and Rplate∼0.8) have been achieved with solid lithium coatings. Together with impurity emission measurements, modeling suggests that during periods of particularly low electron density, influx of impurities from the walls contributes substantially to the global particle balance.
机译:锂泵送入射的氢和杂质离子,可以控制磁约束等离子体中的颗粒存量和燃料分布,并且可以提高壁附近的等离子体温度。结果,密度梯度有望对自由能产生重大影响,从而影响微湍流中的颗粒和热传输,这是高温聚变实验中的主要传输机理。;密度梯度的陀螺动力学模拟中的传输主导的剖面的特征是线性临界梯度小,粒子通量大以及冷粒子优先扩散。结果,热通量低于粒子通量的5/2倍,甚至3/2倍,通常被认为是对流的最小值。令人惊讶的是,这个结果与熵的增加是一致的。使用&eegr;耦合的TEM-ITG(离子温度梯度)模拟。 e =&eegr; i找到&eegr; =∇T /∇n≈ 0.8可使线性临界压力梯度最大化,这表明实验在接近临界ITG稳定性的情况下以较大的&eegr;通过将自由能从温度梯度转移到密度梯度来增加线性临界压力梯度;如果离子传热是新古典的,则使用锂托卡马克实验(LTX)预测的轮廓进行模拟,而电子传热和粒子传递高于新古典水平的固定比例。在外半半径处发现了强大的TEM不稳定性,而在加气过程中也发现ITG也被驱动不稳定。这表明TEM传输将是高温低循环聚变实验中的重要传输机制,在没有稳定机制的情况下,TEM传输可能比新古典传输占主导地位;;已经开发了一种诊断套件来测量LTX中的氢和杂质排放为了确定使用固体锂涂层在小型托卡马克中可实现的再循环下限,评估其对锂表面操作条件的依赖性,并评估其对放电的影响。 -钢基材可显着减少再沉积,因此有效的颗粒约束时间可低至1毫秒血浆和氢气中颗粒物的测量。排放表明,随着后续放电的进行,表面的氢再循环增加;但是,即使在施加了将燃料加注到饱和的几乎两倍的累积燃料后,仍会观察到强烈的氢泵浦作用,应该使锂涂层饱和到氢离子的渗透深度。探针测量表明,当外部燃料终止时,放电的刮除层与具有部分钝化表面的放电相比,具有新鲜涂层的材料衰减到更低的密度,并升高到更高的电子温度,这与回收颗粒的边缘冷却减少有关。在放电即将结束时,较高的等离子体电流与降低的t * p和氢发射相关,这表明使用新鲜涂层的放电在芯中实现了较高的电子温度。给定大量排放量,从PFC表面回收的颗粒通量的分布情况表明,使用固态锂涂层可以实现极低的回收率(Rcore〜0.6和Rplate〜0.8)。结合杂质排放测量,建模表明,在电子密度特别低的时期,杂质从壁中的涌入实质上有助于总体颗粒平衡。

著录项

  • 作者

    Granstedt, Erik Michael.;

  • 作者单位

    Princeton University.;

  • 授予单位 Princeton University.;
  • 学科 Physics Fluid and Plasma.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 265 p.
  • 总页数 265
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号