首页> 外文学位 >Nanoparticle interaction with 193 nm light: Optical characteristics and particle synthesis.
【24h】

Nanoparticle interaction with 193 nm light: Optical characteristics and particle synthesis.

机译:纳米粒子与193 nm光的相互作用:光学特性和粒子合成。

获取原文
获取原文并翻译 | 示例

摘要

Nanoparticles have properties that are distinct and different from bulk materials due to their small size. Understanding the unique nature of nanoparticles can lead to technological innovations ranging from nanoparticle-based environmental monitors to biomedicine. However, evidence suggests that nanoparticles pose potential environmental and human health risks. Control of unintended emission of nanoparticles and the development of viable nanoparticle applications necessitate a thorough characterization of nanoparticle properties and reproducible production of nanostructures.;This thesis investigates optical characteristics and synthesis of nanoparticles, including polystyrene, soot, NaCl, and gold, using 193 nm laser light. These nanoparticles have similar optical characteristics at fluences below 17 J/cm 2: fluorescence signals of the gas phase species produced by UV irradiation are spectrally narrow and self-similar, radiative lifetimes are on the order of the laser pulse duration (∼10 ns), and there is little background signal, indicating that the interaction with 193 nm light is primarily photochemical. At laser fluences exceeding 17 J/cm2, optical breakdown occurs and the emission lasts significantly longer (∼70 ns) with intense white light. With increasing fluence, the fluorescence signals from different particles have linear, intermediate, and saturation regimes, but different rates of the signal increase are observed. A dimensionless parameter, the photon-atom ratio (PAR), is used to evaluate laser-particle interaction energetics. When the signals are normalized with PAR, a similarity in the signals is established regardless of particle materials, sizes, and laser conditions. Above a PAR = 3, where saturation occurs, every particle is fully disintegrated. These optical characteristics are used for in situ, real-time chemical analysis of core-shell nanoparticles.;The photochemical interaction with 193 nm light is exploited to synthesize nanoparticles with a controlled size and morphology. The particles are disintegrated into gas phase species, whose concentration is varied by the laser energy and repetition rate. The photolyzed species undergo nucleation and/or agglomeration to form new smaller nanoparticles at an order of magnitude higher concentration with a more spherical shape than the original particles. The mean diameter and number concentration of polystyrene and soot particles synthesized by a single shot increase with PAR (for PARs < 0.1), whereas significant loss of particle volume at higher PARs by oxidation and the production of stable gaseous species results in the decrease of particle diameter and concentration. In the case of NaCl and gold, increasing PAR leads to increased diameter and concentration of the optically synthesized nanoparticles, as there is no significant particle loss.
机译:纳米颗粒由于尺寸小而具有与块状材料不同的特性。了解纳米粒子的独特性质可以导致技术创新,从基于纳米粒子的环境监测器到生物医学。但是,证据表明,纳米颗粒具有潜在的环境和人类健康风险。为了控制纳米粒子的意外发射和可行的纳米粒子应用的发展,必须对纳米粒子的性质进行全面的表征,并再现性地生产纳米结构。本论文研究了使用193 nm纳米粒子的光学特性和合成,包括聚苯乙烯,烟灰,NaCl和金激光灯。这些纳米粒子在低于17 J / cm的注量下具有相似的光学特性2:由UV辐射产生的气相物质的荧光信号光谱狭窄且自相似,辐射寿命约为激光脉冲持续时间(〜10 ns) ,几乎没有背景信号,表明与193 nm光的相互作用主要是光化学作用。当激光通量超过17 J / cm2时,会发生光学击穿,并且在强白光下发射时间会持续更长的时间(约70 ns)。随着通量的增加,来自不同粒子的荧光信号具有线性,中间和饱和状态,但是观察到信号增加的速率不同。无量纲参数,光子-原子比(PAR),用于评估激光-粒子相互作用的能量。当使用PAR对信号进行归一化时,无论粒子的材料,大小和激光条件如何,都将建立相似的信号。高于PAR = 3(发生饱和)时,每个粒子都会完全分解。这些光学特性用于核壳纳米粒子的原位实时化学分析。利用193 nm光的光化学相互作用来合成尺寸和形态受控的纳米粒子。粒子分解成气相物质,其浓度随激光能量和重复率而变化。光解的物质经历成核和/或附聚以形成新的较小的纳米颗粒,其浓度比原始颗粒更高,且浓度更高,球形更明显。单次喷射合成的聚苯乙烯和烟灰颗粒的平均直径和数量浓度随PAR的增加而增加(对于PARs <0.1),而在较高的PARs下,由于氧化和稳定的气态物质的产生,颗粒体积明显损失,导致颗粒减少直径和浓度。在NaCl和金的情况下,增加的PAR导致光学合成的纳米粒子的直径和浓度增加,因为没有明显的粒子损失。

著录项

  • 作者

    Choi, Jong Hyun.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 157 p.
  • 总页数 157
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号