首页> 外文学位 >Motor Cortex Involvement in Deep Brain Stimulation Therapeutic Action and Motor Learning Impairment in Parkinsonism.
【24h】

Motor Cortex Involvement in Deep Brain Stimulation Therapeutic Action and Motor Learning Impairment in Parkinsonism.

机译:运动皮层参与大脑深部刺激的治疗作用和帕金森病中的运动学习障碍。

获取原文
获取原文并翻译 | 示例

摘要

The primary motor cortex (MI) controls movement directly, but is an under-investigated brain region in the pathogenesis and treatment of Parkinsonian motor disability, when compared with the basal ganglia circuitry. In this study, the roles of MI in underlying the therapeutic action of surgical deep brain stimulation and motor learning impairment were investigated.;Deep brain stimulation of the subthalamic nucleus (STN-DBS) is now a recognized therapeutic option for Parkinson's disease (PD). Although this surgical strategy provides behavioral benefits remarkably, its exact mechanism is still a matter of controversy. In principle, STN-DBS can directly activate a wide range of neuronal elements within the STN and surrounding areas. As the corticofugal neurons (CxFn) in the layer V motor cortex provide a major input to the STN, we hypothesized that the stimulation evoked antidromic cortical activation is involved in the therapeutic mechanism of STN-DBS. In the first series of experiments, we performed simultaneous recordings of multi-unit neuronal activities and local field potentials (LFPs) in MI in freely moving hemi-parkinsonian rats. By identifying stimulation evoked antidromic spike, which occurred at a fixed, short latency, CxFn located in the layer V MI were identified. Increasing stimulation frequency also increased failure rate of activation, resulting in a peak frequency of stochastic antidromic spikes at 125Hz STN-DBS, which was correlated with the optimal therapeutic efficacy observed in behavioral tests. Meanwhile, this antidromic effect was accompanied by the rectification of pathological neuronal activities including increased spontaneous firing rate, reduced burst discharge and synchrony among the CxFn. Field potential analysis revealed that STN-DBS alleviated the dominance of pathological beta band oscillation and spike-field coherence in the MI. More importantly, it was found that the firing probability of CxFn could only be modified following the occurrence of antidromic spikes, suggesting that direct interference of stochastic antidromic spikes with pathological neuronal activities underlies the beneficial effect of STN-DBS.;The MI is not simply a static motor control structure. It also contains a dynamic substrate that participates in motor learning or stores motor memory. In PD patients, loss of cortical plasticity and impaired motor learning is a common feature. As the intrinsic horizontal neuronal connections in MI are a strong candidate of cellular correlate for activity-dependent plasticity, in the second series of experiments, we developed in vivo long-term potentiation (LTP) technique in the MI to investigate the dynamics of cortical plasticity during motor skill learning and the role of the innervation by mesocortical dopamine input. Local depletion of dopamine in the primary motor cortex resulted in reduced performance in the forelimb reaching for food learning task. Although the performance of the PD rats in the initial learning phase was comparable to that of the sham-operated group, as training continued, these animals exhibited deficit in consolidating the motor skill. These deficits closely paralleled the impairment in training-enhanced synaptic connections in layer V neurons, and the in vivo LTP of evoked field excitatory postsynaptic potentials induced by intermittent high frequency stimulation. In addition, progressive recruitment of task-specific neurons was suppressed. Our study therefore revealed that dopamine depletion confined to the MI could lead to impairment in cortical synaptic plasticity which may preferentially affect the consolidation, but not the acquisition, of motor skills. These findings shed light on the cellular mechanisms of motor skill learning and could explain the decreased ability of PD patients in learning new motor skills.
机译:与基底神经节回路相比,原发性运动皮层(MI)直接控制运动,但在帕金森氏运动障碍的发病机理和治疗中是研究不足的大脑区域。在这项研究中,研究了MI在外科深部脑刺激和运动学习障碍的治疗作用中的作用。;丘脑下核(STN-DBS)的深脑刺激现已成为帕金森氏病(PD)公认的治疗选择。尽管这种手术策略显着地提供了行为上的益处,但其确切机制仍存在争议。原则上,STN-DBS可以直接激活STN及其周围区域内的多种神经元。由于第V层运动皮层中的皮质原性神经元(CxFn)为STN提供了主要输入,因此我们假设刺激诱发的抗皮层皮质激活参与了STN-DBS的治疗机制。在第一个系列实验中,我们在自由移动的半帕金森病大鼠中同时记录了MI中的多单位神经元活动和局部场电位(LFP)。通过识别在固定的短等待时间内发生的诱发诱发的抗峰峰值,鉴定出位于V MI层的CxFn。增加刺激频率还会增加激活失败率,从而导致在125Hz STN-DBS上出现随机的反峰峰值频率,这与行为测试中观察到的最佳治疗效果相关。同时,这种抗病作用伴随着病理神经元活动的纠正,包括自发放电率增加,猝发放电减少和CxFn之间的同步性。现场电势分析显示,STN-DBS减轻了MI中病理性β谱带振荡和尖峰场相干性的优势。更重要的是,发现只有在出现抗峰状钉子后才能改变CxFn的放电概率,这表明随机性抗峰状钉子对病理神经元活动的直接干扰是STN-DBS的有益作用的基础。静态电机控制结构。它还包含一个动态底物,该底物参与运动学习或存储运动记忆。在PD患者中,皮质可塑性丧失和运动学习障碍是常见的特征。由于MI中固有的水平神经元连接是依赖于活动相关可塑性的细胞相关物质的强大候选者,在第二系列实验中,我们在MI中开发了体内长期增强(LTP)技术来研究皮质可塑性的动力学运动技能学习过程中以及中皮层多巴胺输入对神经支配的作用。初级运动皮层中多巴胺的局部消耗导致前肢达到食物学习任务的能力下降。尽管PD大鼠在初始学习阶段的表现与假手术组相当,但随着训练的继续,这些动物在巩固运动技能方面表现出不足。这些缺陷与训练增强的V层神经元突触连接的损伤和间歇性高频刺激诱发的诱发田间兴奋性突触后电位的体内LTP密切相关。另外,抑制了任务特异性神经元的逐步募集。因此,我们的研究表明,仅限于MI的多巴胺消耗可能导致皮质突触可塑性受损,这可能会优先影响运动技能的巩固而不是获得能力。这些发现揭示了运动技能学习的细胞机制,并可以解释PD患者学习新运动技能的能力下降。

著录项

  • 作者

    Li, Qian.;

  • 作者单位

    The Chinese University of Hong Kong (Hong Kong).;

  • 授予单位 The Chinese University of Hong Kong (Hong Kong).;
  • 学科 Biology Neuroscience.;Health Sciences General.;Health Sciences Pathology.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 208 p.
  • 总页数 208
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号