首页> 外文学位 >Molecular Simulation Studies of Covalently and Ionically Grafted Nanoparticles.
【24h】

Molecular Simulation Studies of Covalently and Ionically Grafted Nanoparticles.

机译:共价和离子接枝纳米粒子的分子模拟研究。

获取原文
获取原文并翻译 | 示例

摘要

Solvent-free covalently- or ionically-grafted nanoparticles (CGNs and IGNs) are a new class of organic-inorganic hybrid composite materials exhibiting fluid-like behaviors around room temperature. With similar structures to prior systems, e.g. nanocomposites, neutral or charged colloids, ionic liquids, etc, CGNs and IGNs inherit the functionality of inorganic nanopariticles, the facile processibility of polymers, as well as conductivity and nonvolatility from their constituent materials. In spite of the extensive prior experimental research having covered synthesis and measurements of thermal and dynamic properties, little progress in understanding of these new materials at the molecular level has been achieved, because of the lack of simulation work in this new area. Atomistic and coarse-grained molecular dynamics simulations have been performed in this thesis to investigate the thermodynamics, structure, and dynamics of these systems and to seek predictive methods predictable for their properties.;Starting from poly(ethylene oxide) oligomers (PEO) melts, we established atomistic models based on united-atom representations of methylene. The Green-Kubo and Einstein-Helfand formulas were used to calculate the transport properties. The simulations generate densities, viscosities, diffusivities, in good agreement with experimental data. The chain-length dependence of the transport properties suggests that neither Rouse nor reptation models are applicable in the short-chain regime investigated. Coupled with thermodynamic integration methods, the models give good predictions of pressure-composition-density relations for CO 2 + PEO oligomers. Water effects on the Henry's constant of CO 2 in PEO have also been investigated. The dependence of the calculated Henry's constants on the weight percentage of water falls on a temperature-dependent master curve, irrespective of PEO chain length.;CGNs are modeled by the inclusion of solid-sphere nanoparticles into the atomistic oligomers. The calculated viscosities from Green-Kubo relationships and temperature extrapolation are of the same order of magnitude as experimental values, but show a smaller activation energy relative to real CGNs systems. Grafted systems have higher viscosities, smaller diffusion coefficients, and slower chain dynamics than the ungrafted counterparts - nanocomposites - at high temperatures. At lower temperatures, grafted systems exhibit faster dynamics for both nanoparticles and chains relative to ungrafted systems, because of lower aggregation of nanoparticles and enhanced correlations between nanoparticles and chains. This agrees with the experimental observation that the new materials have liquid-like behavior in the absence of a solvent. To lower the simulated temperatures into the experimental range, we established a coarse-grained CGNs model by matching structural distribution functions to atomistic simulation data. In contrast with linear polymer systems, for which coarse-graining always accelerate dynamics, coarse-graining of grafted nanoparticles can either accelerate or slowdown the core motions, depending on the length of the grafted chains. This can be qualitatively predicted by a simple transition-state theory.;Similar atomistic models to CGNs were developed for IGNs, with ammonium counterions described by an explicit-hydrogen way; these were in turn compared with "generic" coarse-grained IGNs. The elimination of chemical details in the coarse-grained models does not bring in qualitative changes to the radial distribution functions and diffusion of atomistic IGNs, but saves considerable simulation resources and make simulations near room temperatures affordable. The chain counterions in both atomistic and coarse-grained models are mobile, moving from site to site and from nanoparticle to nanoparticle. At the same temperature and the same core volume fractions, the nanoparticle diffusivities in coarse-grained IGNs are slower by a factor ten than the cores of CGNs. The coarse-grained IGNs models are later used to investigate the system dynamics through analysis of the dependence on temperature and structural parameters of the transport properties (self-diffusion coefficients, viscosities and conductivities). Further, migration kinetics of oligomeric counterions is analyzed in a manner analogous to unimer exchange between micellar aggregates. The counterion migrations follow the "double-core" mechanism and are kinetically controlled by neighboring-core collisions. (Abstract shortened by UMI.).
机译:无溶剂共价或离子接枝的纳米颗粒(CGN和IGN)是一类新型的有机-无机杂化复合材料,在室温下表现出类似流体的行为。具有与现有系统类似的结构,例如纳米复合材料,中性或带电胶体,离子液体等,CGN和IGN继承了无机纳米颗粒的功能,聚合物的易加工性以及其构成材料的电导率和非挥发性。尽管已经进行了广泛的先前实验研究,涉及合成和热性能和动力学性能的测量,但由于在该新领域缺乏模拟工作,因此在分子水平上对这些新材料的理解进展甚微。本文进行了原子和粗粒度的分子动力学模拟,以研究这些系统的热力学,结构和动力学,并寻求可预测其性能的预测方法。从聚环氧乙烷低聚物(PEO)熔体开始,我们基于亚甲基的统一原子表示建立了原子模型。 Green-Kubo和Einstein-Helfand公式用于计算输运性质。模拟产生的密度,粘度,扩散率与实验数据非常吻合。传输特性对链长的依赖性表明,在研究的短链机制中,劳斯模型和复制模型均不适用。结合热力学积分方法,这些模型可以很好地预测CO 2 + PEO低聚物的压力-组成-密度关系。还研究了水对PEO中CO 2亨利常数的影响。不论PEO链长如何,计算得出的Henry常数对水的重量百分比的依赖性都取决于温度的主曲线。CGNs是通过将固体球形纳米颗粒包含在原子性低聚物中来建模的。根据格林-久保关系和温度外推计算得出的粘度与实验值处于相同的数量级,但相对于实际的CGNs系统显示出较小的活​​化能。嫁接的系统在高温下比未接枝的系统(纳米复合材料)具有更高的粘度,更小的扩散系数和更慢的链动力学。在较低温度下,相对于未接枝的系统,接枝的系统对纳米粒子和链的动力学都更快,这是因为纳米粒子的聚集度较低,并且纳米粒子和链之间的相关性增强。这与实验观察结果一致,即在没有溶剂的情况下,新材料具有类似液体的行为。为了将模拟温度降低到实验范围内,我们通过将结构分布函数与原子模拟数据进行匹配,建立了一个粗粒度的CGNs模型。与线性聚合物系统相反,对于线性聚合物系统而言,粗粒化总是加速动力学,而接枝纳米颗粒的粗粒化则可以加速或减慢核心运动,具体取决于接枝链的长度。这可以通过简单的过渡态理论定性地预测。;为IGN开发了与CGN类似的原子模型,并通过显式氢的方式描述了铵抗衡离子。然后将这些与“通用”粗粒度IGN进行比较。消除粗粒度模型中的化学细节不会对径向分布函数和原子性IGN的扩散带来质的变化,但可以节省大量的模拟资源,并使室温附近的模拟负担得起。原子模型和粗颗粒模型中的链抗衡离子都是可移动的,从一个位置移动到另一个位置,并且从纳米颗粒移动到纳米颗粒。在相同的温度和相同的核心体积分数下,粗颗粒IGN中的纳米粒子扩散率比CGN核心慢十倍。后来,通过分析对温度和运输特性的结构参数(自扩散系数,粘度和电导率)的依赖性,使用了粗粒度IGNs模型来研究系统动力学。此外,以类似于胶束聚集体之间的单体交换的方式分析低聚抗衡离子的迁移动力学。抗衡离子的迁移遵循“双核”机制,并受到邻核碰撞的动力学控制。 (摘要由UMI缩短。)。

著录项

  • 作者

    Hong, Bingbing.;

  • 作者单位

    Princeton University.;

  • 授予单位 Princeton University.;
  • 学科 Engineering Chemical.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 226 p.
  • 总页数 226
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号