首页> 外文学位 >Novel methods in SEMG-Force estimation.
【24h】

Novel methods in SEMG-Force estimation.

机译:SEMG-Force估算中的新方法。

获取原文
获取原文并翻译 | 示例

摘要

An accurate determination of muscle force is desired in many applications in different fields such as ergonomics, sports medicine, prosthetics, human-robot interaction and medical rehabilitation. Since individual muscle forces cannot be directly measured, force estimation using recorded electromyographic (EMG) signals has been extensively studied. This usually involves interpretation and analysis of the recorded EMG to estimate the underlying neuromuscular activity which is related to the force produced by the muscle. Although invasive needle electrode EMG recordings have provided substantial information about neuromuscular activity at the motor unit (MU) level, there is a risk of discomfort, injury and infection. Thus, non-invasive methods are preferred and surface EMG (SEMG) recording is widely used. However, physiological and non-physiological factors, including phase cancelation, tissue filtering, cross-talk from other muscles and non-optimal electrode placement, affect the accuracy of SEMG-based force estimation. In addition, the relative movement of the muscle bulk and the innervation zone (IZ) with respect to the electrode attached to the skin are two major challenges to overcome in force estimation during dynamic contractions.;The experimental results show significant improvement in force prediction using data calibrated with the proposed calibration method, compared to using non-calibrated data. Joint angle dependency and the sensitivity to the location of the sensor in the SEMG-force relationship is reduced with calibration. The SEMG-force estimation error, averaged over all subjects, is reduced by 44% for PCI modeling compared to another modeling technique (fast orthogonal search) applied to the same dataset. Significantly improved force estimation results are also achieved for dynamic contractions when joint angle based calibration and PCI are combined. Using SMP in addition to SEMG leads to significantly better force estimation compared to using only SEMG signals.;The proposed methods have the potential to be combined and used to obtain better force estimation in more complicated dynamic contractions and for applications such as improved control of remote robotic systems or powered prosthetic limbs.;The objective of this work is to improve the accuracy of SEMG-based force estimation under static conditions, and devise methods that can be applied to force estimation under dynamic conditions. To achieve this objective, a novel calibration technique is proposed, which corrects for variations in the SEMG with changing joint angle. In addition, a modeling technique, namely parallel cascade identification (PCI) that can deal with non-linearities and dynamics in the SEMG-force relationship is applied to the force estimation problem. Finally, a novel integrated sensor that senses both SEMG and surface muscle pressure (SMP) is developed and the two signal modalities are used as input to a force prediction model.
机译:在人体工程学,运动医学,假肢,人机交互和医学康复等不同领域的许多应用中,都需要精确确定肌肉力量。由于不能直接测量各个肌肉的力量,因此已广泛研究了使用记录的肌电图(EMG)信号进行力量估算。这通常涉及对记录的EMG的解释和分析,以估计与肌肉产生的力有关的潜在神经肌肉活动。尽管有创针电极EMG记录已提供了有关运动单位(MU)级别的神经肌肉活动的大量信息,但仍有不适,受伤和感染的风险。因此,非侵入性方法是优选的,并且表面肌电图(SEMG)记录被广泛使用。但是,生理和非生理因素,包括相位抵消,组织过滤,其他肌肉的串扰和非最佳电极放置,都会影响基于SEMG的力估算的准确性。此外,肌肉体积和神经支配区(IZ)相对于附着在皮肤上的电极的相对运动是动态收缩过程中力估计中要克服的两个主要挑战。与使用未校准的数据相比,使用建议的校准方法校准的数据。校准可以降低关节角度依赖性以及对SEMG力关系中传感器位置的敏感性。与应用于同一数据集的另一种建模技术(快速正交搜索)相比,PCI建模对所有对象平均的SEMG力估计误差减少了44%。当基于关节角度的校准和PCI结合使用时,动态收缩的力估计结果也显着提高。与仅使用SEMG信号相比,除了使用SEMG以外,还使用SMP可以显着改善力估计。所提出的方法有可能被组合并用于在更复杂的动态收缩中获得更好的力估计,以及用于诸如远程控制改进等应用这项工作的目的是提高在静态条件下基于SEMG的力估计的准确性,并设计可应用于动态条件下的力估计的方法。为了达到这个目的,提出了一种新颖的校准技术,该技术可以校正SEMG随关节角度的变化。另外,将一种建模技术,即可以处理SEMG力关系中的非线性和动力学的并行级联识别(PCI)应用于力估计问题。最后,开发了一种新型集成传感器,可同时感知SEMG和表面肌肉压力(SMP),并将这两种信号形式用作力预测模型的输入。

著录项

  • 作者

    Hashemi, Javad.;

  • 作者单位

    Queen's University (Canada).;

  • 授予单位 Queen's University (Canada).;
  • 学科 Engineering Computer.;Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 202 p.
  • 总页数 202
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号