首页> 外文学位 >Mechanical and optical characterization of force induced chemical reactions in solid state linear polymers.
【24h】

Mechanical and optical characterization of force induced chemical reactions in solid state linear polymers.

机译:固态线性聚合物中力诱导化学反应的机械和光学表征。

获取原文
获取原文并翻译 | 示例

摘要

Traditionally, chemical reactions are driven by thermal, chemical, or electrical potential. By linking force-sensitive chemical species (mechanophores) into polymer backbones, mechanical force can drive chemical reactions. Mechanophores have been developed with potential as damage sensing, self-healing, and self-reinforcing materials. This research investigates the conditions for promoting mechanophore activation in bulk, linear polymers.;An optically active mechanophore is studied. The mechanophore, spiropyran (SP), reacts to a merocyanine (MC) form under tensile force when linked into a polymer backbone. This reaction is reversible and can be driven toward either SP or MC photochemically. Reaction of SP to MC (activation) is accompanied by the emergence of a strong color change and fluorescence signal. SP is incorporated into a polymer backbone by using the mechanophore as an initiator for a living radical polymerization and growing polymer chains at two sites across the SP molecule, thereby covalently bonding the mechanophore in the center of a polymer chain.;Polymer mechanics and mechanophore activation are characterized in both glassy and elastomeric polymers. An experimental set-up is designed and implemented to simultaneously measure stress, strain, fluorescence, and birefringence during tensile deformation of SP-linked polymer samples. By varying the loading conditions and polymer mechanical properties, mechanophore activation is examined as a function of the stress, polymer mobility, structure and orientation of polymer chains.;In an elastomeric polymer, poly(methyl acrylate) (PMA), higher macroscopic stress leads to higher degrees of SP activation at lower levels of deformation. By changing the polymer architecture - increasing the number of polymer chains attached to the mechanophore - increased activation is demonstrated at relatively slow deformation rates. Activation energy for the SP.MC conversion is quantified for an elastomeric polymer based on the kinetics of the reaction. The effect of varying stress on reaction rates and energy barriers is determined using a combined experimental and theoretical approach.;Tensile deformation of SP-linked glassy polymers at room temperature (RT) does not lead to detectable mechanophore activation. Increasing polymer chain mobility, either using a plasticizing solvent or varying test temperature, leads to a range of thermomechanical properties in which glassy SP-linked polymers can be activated by tensile deformation. Within this favorable activation window, the strain to activation varies based on the stiffness of the polymer. The minimum observed strain to activation is approximately 5%, coincident with the onset of polymer yield.;The role of polymer chain alignment and mechanophore orientation are studied using optical techniques. Polymer chain alignment is determined by measurement of birefringence. Activation of mechanophores occurred when polymer chains reached a maximum alignment implying that energy is most efficiently transferred to SP when the polymer chains are aligned in the direction of force. Additionally, mechanophore orientation within the polymer backbone is measured by polarized fluorescence measurements. Mechanophores oriented in the direction of force activate preferentially when compared to those unaligned with the loading direction. Polarized fluorescence measurements also provide insight on polymer mechanics and force on polymer chains.;The force driven reaction of spiropyran mechanophores investigated in this dissertation provides useful guidelines for development and characterization of future mechanochemically active material systems. Polymer architecture, mobility and molecular force transfer are critical variables that control mechanophore activity in bulk polymers.
机译:传统上,化学反应是由热,化学或电势驱动的。通过将对力敏感的化学物质(力学载体)连接到聚合物主链中,机械力可以驱动化学反应。机械力学已被开发为潜在的损伤传感,自我修复和自我增强材料。这项研究调查了促进本体,线性聚合物中的机械力活化的条件。当连接到聚合物主链上时,螺吡喃(SP)的机械机理在拉伸力下与花青(MC)形式反应。该反应是可逆的,可以光化学方式驱动SP或MC。 SP与MC的反应(激活)伴随着强烈的颜色变化和荧光信号的出现。通过使用机械载体作为活性自由基聚合的引发剂并在整个SP分子的两个位置处生长聚合物链,从而将SP引入聚合物主链中,从而在聚合物链的中心共价键合该机械载体;聚合物力学和机械活化在玻璃状和弹性体聚合物中都具有特征。设计并实施了一个实验装置,以同时测量SP连接的聚合物样品拉伸变形过程中的应力,应变,荧光和双折射。通过改变加载条件和聚合物的机械性能,根据应力,聚合物迁移率,聚合物链的结构和取向来检查力学载体的活化。;在弹性聚合物中,聚丙烯酸甲酯(PMA)产生较高的宏观应力在较低的变形水平下达到较高的SP活化程度。通过改变聚合物结构-增加连接到机械载体上的聚合物链的数量-在相对较慢的变形速率下显示出增加的活化。基于反应动力学,对弹性体聚合物定量SP.MC转化的活化能。使用组合的实验和理论方法确定应力变化对反应速率和能垒的影响。SP连接的玻璃态聚合物在室温(RT)下的拉伸变形不会导致可检测到的机械载体活化。使用增塑溶剂或改变测试温度来提高聚合物链的迁移率会导致一系列热机械性能,其中可以通过拉伸变形激活玻璃状SP连接的聚合物。在该有利的活化窗口内,活化的应变基于聚合物的刚度而变化。观察到的最小活化应变约为5%,与聚合物收率的开始相吻合。;使用光学技术研究了聚合物链排列和机械载体取向的作用。聚合物链的排列是通过测量双折射来确定的。当聚合物链达到最大排列时,机械力的激活发生,这意味着当聚合物链沿力的方向排列时,能量最有效地转移到SP上。另外,通过偏振荧光测量来测量聚合物主链内的机械载体取向。与未与加载方向对齐的那些相比,以力的方向定向的力学优先被激活。偏振荧光测量还提供了聚合物力学和聚合物链上的力的见解。本文研究的螺吡喃机理的力驱动反应为将来的机械化学活性材料体系的开发和表征提供了有用的指导。聚合物的结构,迁移率和分子力的传递是控制本体聚合物中力学行为的关键变量。

著录项

  • 作者

    Beiermann, Brett A.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Plastics Technology.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 129 p.
  • 总页数 129
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号