首页> 外文学位 >The Mechanics of an Elastically Deforming Cantilever Beam with an Embedded Sharp Crack and Subjected to an End Transverse Loading.
【24h】

The Mechanics of an Elastically Deforming Cantilever Beam with an Embedded Sharp Crack and Subjected to an End Transverse Loading.

机译:弹性变形的悬臂梁的力学特性,该悬臂梁具有预埋的尖锐裂纹并承受端部横向载荷。

获取原文
获取原文并翻译 | 示例

摘要

Over the last two decades, the frequency response of a component or a structure has been used to assess structural health as one of several methods used in damage detection and structural health monitoring. In studies involving simply supported or cantilever beam components, the natural frequencies and mode shapes for linearly vibrating beams have been established using approximate Euler-Bernoulli or the shear-enhanced Timoshenko beam theories. The latter theory accounts for shear effects that become important in low aspect ratio beams as well in calculating high frequencies in otherwise slender beams. In most studies, the presence of damage is modeled as a localized reduction in the structural stiffness EI of the beam. While the Timoshenko theory allows for the independent reduction of the elastic stiffness E and beam cross-sectional properties such as the cross sectional area A or the second moment of inertia I, both the Euler and Timoshenko theories assumed a symmetric reduction of the beam properties leading to a symmetric reduction of the effective beam stiffness EI. As such, current techniques do not have the refinement needed to detect along with the location of damage, its shape and its orientation.;In this study, both analytical and numerical methods are employed in developing robust models for damage detection. The study utilizes a cantilever beam with a fully embedded sharp crack and subjected to an end applied transverse force as the "binary" geometry for model development. Initially, a broad parametric finite element meshing algorithm capable of generating model geometries with fully embedded cracks at prescribed location, length and orientation is developed. The above algorithm is employed in conducting broad parametric studies of beams with a fully embedded sharp crack. The simulations helped to establish the load transfer and deformation mechanics of the cracked beam. In addition, for each model considered, the near-tip fracture mechanics are established revealing critical issues related to fracture mode mixity, stress intensity and crack surface closure effects.;In parallel studies, analytical methods are employed in establishing for the first time simple but robust Mechanics of Materials models capable of predicting the mechanics of a cantilever beam containing a sharp horizontal crack. Model predictions on the dominant force and moment resultants in the crack region as well as on the extent of the transition zones in the near-tip region have been obtained and compared to their counterparts obtained numerically via the method of finite elements. A remarkable agreement was found between the beam model and finite element predictions.;The beam model outcomes also enabled the development of analytical solutions for the complex near-tip mixed mode fracture fields. The latter models utilize the force and moment resultants in the crack region to obtain analytical expressions for the linear elastic energy release rate at each of the crack tips using both the compliance and the J-integral methods. Arguments regarding the structure of the transition fields and induced force and moment discontinuities at the crack tip cross sections led to unique separation of the mode mixity thus revealing the dominant fracture mode II nature of the beams and loading considered.;Initially revealed by the numerical finite element models and then validated by the analytical beam model, surface curvatures of the cracked beam emerged as a viable predictor of crack damage. More specifically, it has been shown both numerically and analytically, that a measurable deviation from a smooth profile occurs in the free surface curvatures in beams containing a fully embedded sharp crack. Intriguing features on the curvature profiles provide critical clues on the location and extent of the crack. Such findings provide compelling evidence that non-model efficient methods can be developed in detecting damage. Crack surface closure effects are examined to improve the linear elastics structural response. Their effects on the load transfer and deformation mechanics of damage detection are investigated.
机译:在过去的二十年中,部件或结构的频率响应已被用于评估结构的健康状况,这是用于损伤检测和结构健康监测的几种方法之一。在涉及简单支撑或悬臂梁组件的研究中,线性振动梁的固有频率和模态形状已使用近似的Euler-Bernoulli或剪切增强的Timoshenko梁理论建立了。后一种理论解释了剪切效应,该效应在低长宽比的光束中以及在计算细长光束中的高频时都变得很重要。在大多数研究中,将损伤的存在建模为梁的结构刚度EI的局部降低。尽管季莫申科理论允许独立降低弹性刚度E和梁的横截面特性(例如横截面积A或第二惯性矩I),但欧拉理论和蒂莫申科理论都假定梁特性的对称降低导致对称减小有效梁刚度EI。因此,当前的技术并没有检测到损坏的位置,形状和方向所需的改进。在本研究中,分析和数值方法都用于开发用于损坏检测的鲁棒模型。这项研究利用了一个悬臂梁,该悬臂梁完全嵌入了尖锐的裂纹,并承受了末端施加的横向力,作为“二进制”几何图形进行模型开发。最初,开发了一种广泛的参数化有限元网格划分算法,该算法能够生成在指定位置,长度和方向完全嵌入裂纹的模型几何形状。上述算法用于对具有完全嵌入的尖锐裂纹的梁进行广泛的参数研究。仿真有助于建立裂纹梁的荷载传递和变形力学。此外,对于所考虑的每个模型,建立了近端断裂力学,揭示了与断裂模式混合性,应力强度和裂缝表面闭合效应有关的关键问题。;在并行研究中,首次采用分析方法建立了简单但又不复杂的分析方法。强大的材料力学模型,能够预测包含尖锐水平裂缝的悬臂梁的力学性能。已经获得了关于裂纹区域中的主力和弯矩合力以及近端区域中的过渡区域范围的模型预测,并将其与通过有限元方法数值获得的模型预测进行了比较。在梁模型与有限元预测之间找到了显着的一致性。梁模型的成果还使复杂的近尖端混合模式裂缝领域的解析解得以发展。后一种模型利用顺应性和J积分方法利用裂纹区域中的力和力矩合力来获得每个裂纹尖端处线性弹性能量释放速率的解析表达式。关于过渡场的结构以及裂纹尖端横截面的感应力和力矩不连续性的争论导致了模态混合的独特分离,从而揭示了所考虑的梁的主要断裂模态II的性质和所考虑的载荷。有限元模型,然后通过分析梁模型进行验证,裂纹梁的表面曲率可以作为裂纹破坏的可行预测指标。更具体地,从数值和分析上都已经表明,在包含完全嵌入的尖锐裂纹的梁的自由表面曲率中出现了与光滑轮廓的可测量偏差。曲率轮廓上的有趣特征为裂纹的位置和程度提供了关键线索。这些发现提供了令人信服的证据,证明可以开发出非模型有效的方法来检测损坏。研究了裂纹表面封闭效应,以改善线性弹性结构响应。研究了它们对载荷传递和损伤检测变形力学的影响。

著录项

  • 作者

    Fang, Xiaomin.;

  • 作者单位

    University of Maryland, Baltimore County.;

  • 授予单位 University of Maryland, Baltimore County.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 396 p.
  • 总页数 396
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号