首页> 外文学位 >Biogeochemical modeling of the response of forest watersheds in the northeastern U.S. to future climate change.
【24h】

Biogeochemical modeling of the response of forest watersheds in the northeastern U.S. to future climate change.

机译:美国东北部森林流域对未来气候变化的响应的生物地球化学模拟。

获取原文
获取原文并翻译 | 示例

摘要

In this dissertation I assessed the potential hydrochemical responses of future climate change conditions on forested watersheds in the northeastern U.S. using climate projections from several atmosphere ocean general circulation models (AOGCMs) under different carbon dioxide (CO2) emissions scenarios. The impacts of changing climate on terrestrial ecosystems have been assessed by observational, gradient, laboratory and field studies; however, state-of-the-art biogeochemical models provide an excellent tool to investigate climatic perturbations to these complex ecosystems. The overarching goal of this dissertation was to apply a fully integrated coupled hydrological and biogeochemical model (PnET-BGC) to evaluate the effects of climate change and increasing concentrations of atmospheric CO2 at seven diverse, intensively studied, high-elevation watersheds and to evaluate aspects of these applications. I downscaled coarse scale results to local watersheds and applied these values as input to a biogeochemical model, PnET-BGC. I conducted my research in this dissertation in three phases. In phase one, I used PnET-BGC to evaluate the direct and indirect effects of global change drivers (i.e., temperature, precipitation, solar radiation, CO2) on biogeochemical processes in a northern hardwood forest ecosystem at the Hubbard Brook Experimental Forest (HBEF) New Hampshire, USA. A sensitivity analysis was conducted to better understand how the model responds to variation in climatic drivers, showing that model results are sensitive to temperature, precipitation and photosynthetically active radiation inputs. Model calculations suggested that future changes in climate that induce water stress (decreases in summer soil moisture due to shifts in hydrology and increases in evapotranspiration), uncouple plant-soil linkages allowing for increases in net mineralization/nitrification, elevated leaching losses of NO3- and soil and water acidification. Anticipated forest fertilization associated with increases in CO2 appears to mitigate this perturbation somewhat. In phase two, I compared the use of two different statistical downscaling approaches- Bias Correction-Spatial Disaggregation (BCSD) (Grid-based) and Asynchronous Regional Regression Model (ARRM) (station-based) - on potential hydrochemical projections of future climate at the HBEF. The choice of downscaling approach has important implications for streamflow simulations, which is directly related to the ability of the downscaling approach to mimic observed precipitation patterns. The climate and streamflow change signals indicate that the current flow regime with snowmelt-driven spring-flows in April will likely shift to conditions dominated by larger flows throughout winter. Model results from BCSD downscaling show that warmer future temperatures cause midsummer drought stress which uncouples plant-soil linkages, leading to an increase in net soil nitrogen mineralization and nitrification, and acidification of soil and streamwater. In contrast, the precipitation inputs depicted by ARRM downscaling overcame the risk of drought stress due to greater estimates of precipitation inputs. In phase three of this research, I conducted a cross-site analysis of seven intensive study sites in the northeastern U.S. with diverse characteristics of climate, soil and vegetation type, and historical land disturbances to assess the range of forest-watershed responses to changing climate. Model results show that evapotranspiration increases across all sites under potential future conditions of warmer temperature and longer growing season. Modeling results indicate that spruce-fir forests will likely experience temperature stress and decline in productivity, while some of the northern hardwood forests are likely to experience water stress due to early loss of snowpack, longer growing season and associated water deficit. This latter response is somewhat counter-intuitive as most sites are expected to have increases in precipitation. Following increases in temperature, ET and water stress associated with future climate change scenarios, a shifting pattern in carbon allocation in plants was evident causing significant changes in NPP. The soil humus C pool decreased significantly across all sites and showed strong negative relationship with increases in temperature. Cross-site analysis among different watersheds in the Northeast indicated that dominant type of vegetation, and historical land disturbances coupled with climate variability will influence future responses of watersheds to climate change. The variability in hydrochemical response across sites is due to vegetation type, soil and geological characteristics, and historical land disturbances.
机译:在这篇论文中,我使用了来自不同二氧化碳(CO2)排放情景下的几种大气海洋一般环流模型(AOGCM)的气候预测,评估了美国东北部森林流域未来气候变化条件的潜在水化学响应。气候变化对陆地生态系统的影响已通过观察,梯度,实验室和实地研究进行了评估;然而,最先进的生物地球化学模型为研究这些复杂生态系统的气候扰动提供了极好的工具。本文的总体目标是应用一个完全集成的水文和生物地球化学耦合模型(PnET-BGC)来评估气候变化和增加的大气二氧化碳浓度在七个不同的,经过深入研究的高海拔流域的影响,并评估各个方面这些应用程序中。我将粗尺度结果按比例缩小到局部流域,并将这些值用作生物地球化学模型PnET-BGC的输入。我分三个阶段对本文进行了研究。在第一阶段,我使用PnET-BGC评估了全球变化驱动因素(即温度,降水,太阳辐射,CO2)对哈伯德布鲁克实验森林(HBEF)北部硬木森林生态系统中生物地球化学过程的直接和间接影响。美国新罕布什尔州。进行了敏感性分析,以更好地了解模型如何响应气候驱动因素的变化,表明模型结果对温度,降水和光合有效辐射输入敏感。模型计算表明,未来的气候变化会引起水分胁迫(由于水文学变化和蒸散增加而导致夏季土壤水分减少),植物与土壤之间的联系解耦,从而导致净矿化/硝化作用增加,NO3-和淋溶损失增加。土壤和水的酸化。与二氧化碳增加相关的预期森林施肥似乎在某种程度上减轻了这种干扰。在第二阶段中,我比较了两种不同的统计缩减方法的使用-偏差校正-空间分解(BCSD)(基于网格)和异步区域回归模型(ARRM)(基于站)-对未来气候的潜在水化学预测HBEF。降尺度方法的选择对流量模拟具有重要意义,这直接关系到降尺度方法模拟观测到的降水模式的能力。气候和水流变化信号表明,当前以4月融雪为动力的春季水流的流态可能会转变为整个冬季以较大水流为主的条件。 BCSD缩减的模型结果表明,未来气温升高会导致盛夏的干旱胁迫,从而解除植物与土壤之间的联系,导致土壤净氮矿化和硝化作用以及土壤和河水的酸化增加。相反,由于对降水投入的估计更大,ARRM缩减所描述的降水投入克服了干旱胁迫的风险。在这项研究的第三阶段,我对美国东北部七个密集的研究站点进行了跨站点分析,这些站点具有不同的气候,土壤和植被类型以及历史土地干扰特征,以评估森林流域对气候变化的响应范围。模型结果表明,在潜在的未来温度升高和生长季节延长的条件下,所有地点的蒸散量都将增加。模拟结果表明,由于杉木积雪的早期损失,较长的生长期和相关的缺水状况,云杉杉木林可能会遭受温度胁迫并导致生产力下降,而一些北部阔叶林则可能遭受水分胁迫。后一种响应有些违反直觉,因为预计大多数站点的降水都会增加。随着温度,ET和水分胁迫与未来气候变化情景相关联的升高,植物中碳分配的变化模式显然会引起NPP的显着变化。土壤腐殖质碳库在所有地点均显着下降,并且与温度升高呈强烈的负相关关系。东北不同流域之间的跨站点分析表明,植被的优势类型,历史土地干扰以及气候变化将影响流域对气候变化的未来响应。不同地点的水化学反应差异是由于植被类型,土壤和地质特征以及历史土地干扰造成的。

著录项

  • 作者

    Pourmokhtarian, Afshin.;

  • 作者单位

    Syracuse University.;

  • 授予单位 Syracuse University.;
  • 学科 Engineering Environmental.;Climate Change.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 193 p.
  • 总页数 193
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号