首页> 外文学位 >Development of tailored cellular structure as a novel catalyst integration platform for microreactors.
【24h】

Development of tailored cellular structure as a novel catalyst integration platform for microreactors.

机译:量身定制的细胞结构的开发,作为微反应器的新型催化剂集成平台。

获取原文
获取原文并翻译 | 示例

摘要

A silica cellular structure was synthesized as a novel means of enhancing the geometrical surface area of a silicon microreactor with cell diameter, cell interconnectivity, and skeleton density as critical and controllable structural features. Based on theoretical considerations of the pressure drop, mixing, and mechanical stability issues associated with microreactor applications, cell diameter of ∼10 mum, cell interconnectivity of ∼0.4, and fully dense skeleton were determined as synthesis targets. In this synthesis method, surface-selective infiltration, assembly, and partial sintering of polystyrene microspheres in the microchannel were used as mechanisms to create a sacrificial template which represented an inverse structure of the final cellular structure. The polymer template was infiltrated with a silica precursor, and the infiltrated structure was dried and calcined at 500°C to remove the polymer phase and subsequently sintered at 1100°C to form dense silica skeleton. With the use of ∼16 mum polystyrene microspheres, the average cell diameter of ∼12 mum was achieved in the final cellular structure. Cell interconnectivity was controlled to be ∼0.4 by sintering the polystyrene microspheres at 100°C for 180 seconds. Volume shrinkage and crack formation during drying of the infiltrated template structure were significant when the precursor contained small silica particles in the range of several manometers. The volume shrinkage and crack formation could be prevented during drying using the silica precursor containing larger silica particles in the range of ∼40 to 500 nm. However, instability in the cellular structure occurred during sintering due to the delayed volume shrinkage of the specimens prepared with the larger silica particles. Also, the larger particles were more difficult to infiltrate into the interstitial space of the polymer template. In comparison to free-standing cellular specimens prepared by a similar template method, the volume shrinkage and crack formation issues offered a unique challenge for synthesizing the cellular structure which could be net-shaped into the spatial confinement of the microchannel geometry.
机译:合成了二氧化硅细胞结构,作为提高硅微反应器几何表面积的一种新颖手段,其中细胞直径,细胞互连性和骨架密度是关键且可控制的结构特征。基于与微反应器应用相关的压降,混合和机械稳定性问题的理论考虑,确定了约10μm的泡孔直径,约0.4的泡孔互连性和完全致密的骨架作为合成目标。在这种合成方法中,聚苯乙烯微球在微通道中的表面选择性渗透,组装和部分烧结被用作创建代表最终细胞结构的反向结构的牺牲模板的机制。用二氧化硅前体渗透聚合物模板,并且将渗透的结构干燥并在500℃下煅烧以除去聚合物相,随后在1100℃下烧结以形成致密的二氧化硅骨架。使用约16微米的聚苯乙烯微球,可以在最终的细胞结构中获得约12微米的平均泡孔直径。通过将聚苯乙烯微球在100°C烧结180秒,将细胞的互连性控制在0.4左右。当前体包含数个压力计范围内的小二氧化硅颗粒时,在渗透的模板结构干燥期间的体积收缩和裂缝形成是显着的。使用含有约40至500 nm范围较大二氧化硅颗粒的二氧化硅前体,可防止干燥期间体积收缩和裂纹形成。然而,由于用较大的二氧化硅颗粒制备的样品的体积收缩延迟,所以在烧结过程中发生了孔结构的不稳定性。而且,较大的颗粒更难以渗透到聚合物模板的间隙中。与通过类似的模板方法制备的独立式细胞标本相比,体积收缩和裂纹形成问题为合成细胞结构提供了独特的挑战,该细胞结构可以网状形成微通道几何形状的空间限制。

著录项

  • 作者

    Chen, Haibiao.;

  • 作者单位

    Stevens Institute of Technology.;

  • 授予单位 Stevens Institute of Technology.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 185 p.
  • 总页数 185
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号