首页> 外文学位 >Modeling stochasticity in gene regulation.
【24h】

Modeling stochasticity in gene regulation.

机译:在基因调控中模拟随机性。

获取原文
获取原文并翻译 | 示例

摘要

Intrinsic stochasticity plays an essential role in gene regulation because of the small number of involved molecules of DNA, mRNA and protein of a given species. To better understand this phenomenon, small gene regulatory systems are mathematically modeled as systems of coupled chemical reactions, but the existing exact description utilizing a Chapman-Kolmogorov equation or simulation algorithms is limited and inefficient. The present work introduces a much more efficient yet accurate modeling approach, which allows analyzing stochasticity in the system in terms of the underlying distribution function.;The novel modeling approach is motivated by the analysis of a single gene regulatory module with three sources of stochasticity: intermittent gene activity, mRNA transcription/decay and protein translation/decay noise. Although the corresponding Chapman Kolmogorov equation cannot be solved when a large number of molecules are considered, it is used to analytically derive the first two moments of the underlying distribution function. The mRNA and protein variance is found decomposable into additive terms resulting from the respective sources of stochasticity, which allow quantifying their significance in the process.;The variance decomposition is asserted by constructing two approximations that establish a novel modeling approach: First, the continuous approximation, which considers only the stochasticity due to the intermittent gene activity. Second, the mixed approximation, which in addition attributes stochasticity to the mRNA transcription/decay process. Introduced approximations yield systems of first order partial differential equations for the underlying distribution function, which can be efficiently solved using developed numerical methods. Single cell simulations and numerical two-dimensional mRNA-protein stationary distribution functions are presented to confirm accuracy of introduced models. Further simplifications in the model allow considering regulation of the two- (possibly three-) gene systems for which two-dimensional protein-protein distributions are calculated.;Finally, the assumption that gene activity is due to the binding and dissociation of a single regulatory molecule is relaxed. Based on the gene expression data, the models developed are applied to hypothesize the existence of a sequential activation mechanism of NF-kappaB dependent genes important in cell survival and inflammation.;Future applications include analysis of small genetic networks, which are being currently engineered based on the prokaryotic and eukaryotic components.
机译:内在随机性在基因调控中起着至关重要的作用,因为给定物种的DNA,mRNA和蛋白质所涉及的分子数量很少。为了更好地理解这种现象,将小基因调节系统数学上建模为耦合化学反应的系统,但是利用Chapman-Kolmogorov方程或模拟算法的现有精确描述是有限且效率低下的。本工作介绍了一种效率更高但更准确的建模方法,该方法可以根据基础分布函数来分析系统中的随机性。新颖的建模方法是通过分析具有三种随机性来源的单基因调节模块来激发的:间歇性基因活性,mRNA转录/衰变和蛋白质翻译/衰变噪声。尽管当考虑大量分子时无法解决相应的查普曼·柯尔莫哥洛夫方程,但该方程用于分析性推导基础分布函数的前两个矩。发现mRNA和蛋白质的方差可分解为由随机性的各个来源产生的加法项,从而可以量化其在过程中的重要性。方差分解是通过构建两个近似方法来建立的,该方法建立了一种新颖的建模方法:首先,连续近似法,它仅考虑由于基因活动的间歇性而产生的随机性。第二,混合近似,其另外将随机性归因于mRNA转录/衰减过程。引入了近似的产生基础分布函数的一阶偏微分方程的系统,可以使用发达的数值方法有效地求解该系统。提出了单细胞模拟和二维二维mRNA-蛋白质稳态分布函数,以确认引入模型的准确性。模型中的进一步简化允许考虑对计算二维蛋白质-蛋白质分布的二维(可能是三个)基因系统进行调节。最后,假设基因活性是由于单个调节剂的结合和解离而产生的。分子松弛。基于基因表达数据,开发的模型可用于假设存在对细胞存活和炎症至关重要的NF-κB依赖性基因的顺序激活机制。未来的应用包括对小型遗传网络的分析,目前正在基于这些基因工程进行设计在原核和真核成分上。

著录项

  • 作者

    Paszek, Pawel.;

  • 作者单位

    Rice University.;

  • 授予单位 Rice University.;
  • 学科 Statistics.;Biology Molecular.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 142 p.
  • 总页数 142
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号