首页> 外文学位 >BODIPY-based panchromatic pi-conjugated polymers for organic photovoltaics.
【24h】

BODIPY-based panchromatic pi-conjugated polymers for organic photovoltaics.

机译:用于有机光伏的基于BODIPY的全色pi共轭聚合物。

获取原文
获取原文并翻译 | 示例

摘要

In a highly interdisciplinary field, such as organic photovoltaics (OPVs), developing a predictive understanding of the relationship between molecular structures, morphology of the photoactive layer and the ultimate device performance is the key to unlocking the vast potential of this field. Although isolated examples of high-performance organic molecules are prevalent in the literature, the reasons for their superior performance are not well understood. The function of an OPV device is dependent of four key processes: (i) light absorption, (ii) charge separation, (iii) charge transport, and (iv) charge collection. While the first three are material-dependent factors, charge collection depends on the nature of the interfaces involved. We have thus investigated a new class of semiconductor molecules based on BODIPY dyes with the aim of understanding how variations in the molecular structure affect the optoelectronic and transport properties of the molecules.;First-generation pi-conjugated polymers based on the BODIPY core possess broad and intense absorption spectra. Additionally, the frontier molecular orbital (FMO) energy levels of the polymers can be tuned by a judicious choice of the comonomers. Electron-deficient comonomers with electron affinities higher than that of the BODIPY core, predominantly afford n-type polymers. A unique feature of these semiconductors is their panchromatic absorption spectrum that spans throughout the visible region. Thus these polymers can be considered to be potential electron acceptors in all-polymer solar cells.;Copolymerization of BODIPY with electron-rich comonomers, on the other hand, only results in p-type semiconductors. Furthermore, the highest occupied molecular orbital (HOMO) of these polymers is found to correlate with the ionization potential of the electron-rich monomer. Having said that, the lowest unoccupied molecular orbital (LUMO) energy level does not change. Thus for the first time, a correlation between theoretical calculations and experimental observations has been demonstrated for predicting the FMO energy levels of BODIPY-based semiconducting polymers.;Second-generation copolymers based on an unsubstituted BODIPY core retain the broad absorption characteristics of the first-generation polymers. In addition, due to reduced electron density on the BODIPY core, the HOMO energy level of the resulting polymers is reduced thereby imparting enhanced oxidative stability to these polymers. Charge transport measurements through thick films (∼1 micron) reveal only p-channel activity with hole mobilities comparable to some of the high-performance polymers reported in literature. Preliminary bulk-heterojunction OPV devices fabricated with these polymers show modest power conversion efficiencies. We believe that understanding the morphology of the active layer in relation to the polymer structure will help improve future molecular designs and eventually, device performance.
机译:在高度跨学科的领域(例如有机光伏(OPV))中,发展对分子结构,光敏层形态和最终器件性能之间关系的预测性理解是释放该领域巨大潜力的关键。尽管高性能有机分子的分离实例在文献中很普遍,但其优异性能的原因尚未得到很好的理解。 OPV器件的功能取决于四个关键过程:(i)光吸收,(ii)电荷分离,(iii)电荷传输和(iv)电荷收集。尽管前三个是与材料有关的因素,但电荷收集取决于所涉及的界面的性质。因此,我们研究了基于BODIPY染料的一类新型半导体分子,目的是了解分子结构的变化如何影响分子的光电和传输性能。;基于BODIPY核的第一代π共轭聚合物拥有广泛的应用和强吸收光谱。另外,可以通过明智地选择共聚单体来调节聚合物的前沿分子轨道(FMO)能级。电子亲和力高于BODIPY核的电子缺陷型共聚单体,主要提供n型聚合物。这些半导体的独特之处在于其全色吸收光谱跨越了整个可见光区域。因此,这些聚合物可以被认为是全聚合物太阳能电池中的潜在电子受体。另一方面,BODIPY与富电子共聚单体的共聚只会产生p型半导体。此外,发现这些聚合物的最高占据分子轨道(HOMO)与富电子单体的电离势相关。话虽如此,最低的未占用分子轨道(LUMO)能级不变。因此,首次证明了理论计算和实验观察之间的相关性,以预测基于BODIPY的半导体聚合物的FMO能级。基于未取代的BODIPY核的第二代共聚物保留了第一类聚合物的广泛吸收特性。代聚合物。另外,由于BODIPY核上电子密度的降低,所得聚合物的HOMO能级降低,从而赋予这些聚合物增强的氧化稳定性。通过厚膜(约1微米)进行的电荷传输测量仅显示出p沟道活性,其空穴迁移率可与文献中报道的某些高性能聚合物相媲美。用这些聚合物制成的初步体-异质结OPV器件显示出适度的功率转换效率。我们相信,了解与聚合物结构有关的活性层的形态将有助于改善未来的分子设计,并最终改善器件性能。

著录项

  • 作者单位

    University of Massachusetts Amherst.;

  • 授予单位 University of Massachusetts Amherst.;
  • 学科 Chemistry General.;Chemistry Organic.;Chemistry Polymer.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 247 p.
  • 总页数 247
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号