首页> 外文学位 >Optical Near Field Studies of Plasmonic and Optical Antennas For Sensitive and Selective Biosensing Applications.
【24h】

Optical Near Field Studies of Plasmonic and Optical Antennas For Sensitive and Selective Biosensing Applications.

机译:用于敏感和选择性生物传感应用的等离子和光学天线的光学近场研究。

获取原文
获取原文并翻译 | 示例

摘要

For biosensing applications a useful device needs at least two properties: high sensitivity and high selectivity. Optical spectroscopy offers unique advantages over other sensing techniques however one big challenge to overcome is the mismatch between wavelength and the size of biologically relevant molecules. In order to have high enough sensitivity to approach the single-molecule limit, the interaction between the light and the molecule should be strong. However, the diffraction limit of light is approximately half the incidence wavelength, on the order of 100 nm for the smallest nondestructive wavelengths. This presents a significant mismatch between the size of the molecule and the smallest focus spot of the light. The photo-excitation should be compressed more than 100 fold to interact strongly. We must use metallic antennas that convert the incidence radiation into plasmonic modes which can then be compressed well below the wavelength diffraction limit. Studying the near field characteristics of these metallic nanostructures will help us gain insight into this emerging field and allow us to better use them in developing next generation devices.;We have developed different geometries of these antennas and simulated their performance using Finite Difference Time Domain software. We have concentrated our efforts in the mid-infrared because that is the natural molecular vibration frequency region and also the near infrared because at these frequencies there exists a mature industry for compact sources, detectors, and fiber optic components.;Our simulations show a 6,000 fold mode compression for a bowtie antenna and a million fold compression for a plasmonic photonic crystal (ppc) antenna. The bull's-eye antenna does not have as a high a mode compression but it has a natural geometry for molecular sensing due to the central metallic disc. Experimentally, we have measured the near field of these antennas with a custom back reflection apertureless NSOM setup in both non-contact and constant current AFM mode and found excellent qualitative agreement with our simulations for the bowtie and bull's-eye. Further development on these experimental methods will help bring about advances in medical devices, MEMS, NEMS, and revolutionize the way we engineer nanoscale optical components.
机译:对于生物传感应用,有用的设备至少需要两个属性:高灵敏度和高选择性。光谱技术比其他传感技术具有独特的优势,但是要克服的一大挑战是波长与生物相关分子的大小不匹配。为了具有足够高的灵敏度以接近单分子极限,光与分子之间的相互作用应很强。但是,光的衍射极限约为入射波长的一半,对于最小的非破坏性波长,约为100 nm。这在分子的大小和光的最小焦点之间呈现出明显的不匹配。光激发应被压缩100倍以上以产生强烈的相互作用。我们必须使用金属天线将入射辐射转换为等离子体模式,然后将其压缩到远低于波长衍射极限的水平。研究这些金属纳米结构的近场特性将有助于我们深入了解这一新兴领域,并使我们能够在开发下一代设备中更好地利用它们。我们已经开发了这些天线的不同几何形状,并使用时差有限域软件来模拟它们的性能。 。我们将精力集中在中红外,因为这是自然的分子振动频率区域,也是近红外区域,因为在这些频率下,存在着用于紧凑型光源,检测器和光纤组件的成熟产业。我们的仿真表明,有6000领结天线的折叠模式压缩和等离子光子晶体(ppc)天线的一百万倍压缩。靶心天线没有较高的模式压缩,但是由于中央金属盘的缘故,它具有用于分子感应的自然几何形状。在实验上,我们已经使用非接触式和恒定电流AFM模式的自定义背反射无孔NSOM设置测量了这些天线的近场,并发现与领结和牛眼的仿真在质量上有很好的一致性。这些实验方法的进一步发展将有助于推动医疗设备,MEMS,NEMS的发展,并彻底改变我们设计纳米级光学组件的方式。

著录项

  • 作者

    Gelfand, Ryan M.;

  • 作者单位

    Northwestern University.;

  • 授予单位 Northwestern University.;
  • 学科 Engineering Electronics and Electrical.;Physics Optics.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 126 p.
  • 总页数 126
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号