首页> 外文学位 >FEM based interdisciplinary approaches to optimization of multi-stage metal forming processes.
【24h】

FEM based interdisciplinary approaches to optimization of multi-stage metal forming processes.

机译:基于FEM的跨学科方法,可优化多阶段金属成型工艺。

获取原文
获取原文并翻译 | 示例

摘要

Timely response to customer needs is extremely important, at the same time, the internal and external qualities of the product need to be ensured. A good process design and control technique could lower the production cost, at the same time, reduce the scrap rate. However, the non-linear nature of the manufacturing, the close coupling between the thermal, mechanical and material phenomena, and the multi-step nature of optimization make the process difficult to formulate and solve. Advances in the numerical analysis tools have made it possible to model the metal flow in non-isothermal metal forming processes. However, the calculations often become time and computer resource intensive. Process optimizations become very difficult and unstable limiting the numerical tools to trial and error approaches.; In this dissertation, interdisciplinary approaches to optimization of multi-stage metal forming are investigated for application to different aspects of the metal forming processes. These approaches utilize the numerical efficiency and accuracy of the finite element method, fast processing and decision making ability of AI (Artificial Intelligence) techniques, and the strong planning function of the Design of Experiment (DOE) method. The inverse technique is examined for its efficiency in determining the thermomechanical processing history of the rolling mill for the desired final product attributes in roll pass and mill design. Moreover, a virtual soft sensor is developed for the metal forming process, and is applied to the hot forging of a wheel hub process. Finally, a roll pass design approach with minimum sensitivity is presented to accommodate the variance in the rolling process. In this dissertation, the interdisciplinary approaches are investigated, including Finite Element Method (FEM), ANN, Simulated Annealing (SA), and DOE and other statistical techniques.
机译:及时响应客户需求非常重要,与此同时,需要确保产品的内部和外部质量。好的工艺设计和控制技术可以降低生产成本,同时降低废品率。但是,制造过程的非线性性质,热,机械和材料现象之间的紧密耦合以及优化的多步骤性质使该过程难以制定和解决。数值分析工具的进步使得在非等温金属成形过程中对金属流动进行建模成为可能。但是,计算通常会占用大量时间,并且会占用大量计算机资源。流程优化变得非常困难且不稳定,将数值工具限制为反复试验方法。本文研究了跨学科的多阶段金属成形优化方法,以应用于金属成形工艺的不同方面。这些方法利用了有限元方法的数值效率和准确性,AI(人工智能)技术的快速处理和决策能力以及实验设计(DOE)方法的强大计划功能。在确定轧机道次和轧机设计中所需的最终产品属性时,要检查反向技术在确定轧机热机械加工历史时的效率。此外,虚拟的软传感器被开发用于金属成型过程,并且被应用于轮毂过程的热锻。最后,提出了一种具有最小灵敏度的轧制道次设计方法,以适应轧制过程中的变化。本文研究了跨学科的方法,包括有限元法,人工神经网络,模拟退火法,模拟能效法和其他统计技术。

著录项

  • 作者

    Ji, Meixing.;

  • 作者单位

    The Ohio State University.;

  • 授予单位 The Ohio State University.;
  • 学科 Engineering Industrial.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 151 p.
  • 总页数 151
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 一般工业技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号