首页> 外文学位 >Development of novel methods for the rapid separation of biomolecules.
【24h】

Development of novel methods for the rapid separation of biomolecules.

机译:快速分离生物分子的新方法的开发。

获取原文
获取原文并翻译 | 示例

摘要

Successful methods for the separation of biomolecules like amino acids, proteins, peptides, and DNA have been developed previously using HPLC, GC, GC-MS, and CE. Recently CE has become a routine laboratory technique in the analysis of biological molecules. Even though high-resolution separations with small sample volumes is the main advantage, CE is limited by lower sensitivity detection of analytes when universal detectors like UV absorption or refractive index detectors are used. Therefore, sensitivity enhancement can be obtained by either using different detection schemes or electrophoretically based pre- or on-line concentration methods. These can be grouped into two categories. The first category includes IEF, CGF or TGF where sensitivity is achieved through equilibrium electrofocusing. In these methods, electrophoresis and bulk solution is combined in the capillary or separation column to form a null velocity point, a point at which the net velocity of the analyte is zero. Using these methods 10-10,000 fold sensitivity enhancement is achieved. The second category uses velocity gradients but not the nul velocity for the enrichment of samples. These methods include FASS, LVSS, NSM, etc., which are applied for the analysis of small molecules, and 10-10,000 fold sensitivity enhancement is reported by using these methods.;In this work, first GEITP an on-line preconcentration technique is applied for the detection of amino acids (using Trp and Tyr as model analytes). This work also established the effects of different parameters on enrichment. The parameters studied include effect of current flow acceleration across capillary inner diameter, the effect of leading electrolyte (LE) concentration on current density, and the effect of applied electric fields on the current density. To explore the application of GEITP in biological fluids, optimized parameters were developed for the detection and separation of Trp and Tyr in artificial cerebrospinal fluid (aCSF). Next, GEITP was applied for enrichment and separation of physiologically relevant concentrations of chromophore-derivatized Asp and Glu in high conductivity samples like artificial cerebrospinal fluid (aCSF). It was concluded from this work that the major factors which influence the enrichment is the ratio of current density to sample conductivity. Finally, GEITP is applied as a prior step before CZE to increase the resolution between analytes without using ampholyte mixtures. In this method GEITP was combined to CZE to achieve resolution adjustment between amino acids mixture using low pressure hydrodynamic flow during CZE without changing the separation column, field strength, or electrolyte system.;In this work, a rapid CE method for extraction and analysis of amino acids in planarians, labeled with 4-Fluoro-7-nitro-2,1,3-benzoxadiazole (NBD-F), was developed. This method was applied to detect the changes in the levels of amino acids when planarians were fed and starved. This method can be applied to study pharmacological effects in planaria, as it can monitor different amino acid levels with respect to feeding. Finally, ssDNA photoproducts of different lengths (11-mer and 63-mer) were separated using two different matrices, a traditional C18 and a PV/DBS (PLRP-S) matrix. A faster separation (within ∼ 10 mins) was achieved for a 11-mer by the PLRP-S column. A separation was achieved in the PLRP-S column for the 63-mer while there was no separation in C18 column. Baseline resolution was not achieved. Therefore, C18 can best be used for small length DNA while PLRP-S can be applied for longer length DNA, as it is more hydrophobic than C18 column. Parameters can still be optimized for a baseline separation.
机译:先前已经使用HPLC,GC,GC-MS和CE开发了成功的分离生物分子(如氨基酸,蛋白质,肽和DNA)的方法。最近,CE已成为分析生物分子的常规实验室技术。尽管使用小样本量进行高分辨率分离是主要优势,但当使用通用检测器(如UV吸收或折射率检测器)时,CE仍受分析物灵敏度较低的限制。因此,可以通过使用不同的检测方案或基于电泳的在线或在线浓缩方法来提高灵敏度。这些可以分为两类。第一类包括IEF,CGF或TGF,其中通过平衡电聚焦实现灵敏度。在这些方法中,电泳和本体溶液在毛细管或分离柱中合并形成零速度点,该点是分析物的净速度为零的点。使用这些方法,可以提高10-10,000倍的灵敏度。第二类使用速度梯度而不是零速度来富集样品。这些方法包括FASS,LVSS,NSM等用于小分子分析的方法,使用这些方法报告的灵敏度提高了10-10,000倍。;在这项工作中,首先GEITP是一种在线预浓缩技术。应用于氨基酸检测(使用Trp和Tyr作为模型分析物)。这项工作还确定了不同参数对富集的影响。研究的参数包括毛细管内径上电流加速的影响,电解液中铅的浓度对电流密度的影响以及施加的电场对电流密度的影响。为了探索GEITP在生物体液中的应用,开发了优化参数,用于检测和分离人工脑脊液(aCSF)中的Trp和Tyr。接下来,GEITP被用于富集和分离高电导率样品(例如人工脑脊髓液)中生色团衍生的Asp和Glu的生理相关浓度。从这项工作可以得出结论,影响富集的主要因素是电流密度与样品电导率之比。最后,GEITP作为CZE之前的先前步骤,可在不使用两性电解质混合物的情况下提高分析物之间的分离度。在该方法中,GEITP与CZE结合使用,可在CZE过程中使用低压流体动力流实现氨基酸混合物之间的分离度调节,而无需改变分离柱,场强或电解质系统。开发了用4-氟-7-硝基-2,1,3-苯并恶二唑(NBD-F)标记的平面虫中的氨基酸。该方法被用于检测饲喂和饥饿饥饿者的氨基酸水平的变化。该方法可用于研究涡虫的药理作用,因为它可以监测与进食有关的不同氨基酸水平。最后,使用两种不同的基质(传统的C18基质和PV / DBS(PLRP-S)基质)分离不同长度(11-mer和63-mer)的ssDNA光产物。使用PLRP-S色谱柱可快速分离11个单体(约10分钟以内)。对于63-mer,在PLRP-S色谱柱中实现了分离,而在C18色谱柱中未实现分离。未达到基准分辨率。因此,C18最好用于小长度的DNA,而PLRP-S可以用于较长的DNA,因为它比C18色谱柱更疏水。仍可以优化参数以进行基线分离。

著录项

  • 作者

    Mamunooru, Manasa.;

  • 作者单位

    Temple University.;

  • 授予单位 Temple University.;
  • 学科 Chemistry General.;Chemistry Biochemistry.;Chemistry Analytical.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 184 p.
  • 总页数 184
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号