首页> 外文学位 >Neurobioactive peptide amphiphile nanofiber scaffolds for spinal cord repair.
【24h】

Neurobioactive peptide amphiphile nanofiber scaffolds for spinal cord repair.

机译:具有神经生物活性的肽两亲纳米纤维支架,可修复脊髓。

获取原文
获取原文并翻译 | 示例

摘要

This thesis describes a set of peptide amphiphiles (PAs) designed for spinal cord repair (SCI). These PAs self: assemble under physiological conditions into nanofibers that cause macroscopic gelation. Hydrogen bonding, hydrophobicity, and electrostatics, which control the self-assembly, are compared throughout this thesis. PA performance is explored from a materials science and a bioengineering perspective.; The salt-triggered gelation of three PAs with similar charge distributions, each bearing the neurite-outgrowth-promoting laminin-1 epitope IKVAV, is studied by rheology in Chapter 2. Stiffer, more hydrophilic PAs gel more slowly, as verified by testing analogous PAs bearing the fibronectin epitope RGD. Circular dichroism (CD) and turbidity suggest a nucleated self-assembly mechanism that depends on preexisting aggregates. Slowing gelation assists PA injection into the mouse spinal cord. Mouse neural progenitor cell (mNPC) studies with the IKVAV-PAs show cell survival, neurite outgrowth and selective neuronal differentiation, which may improve SCI repair by preventing glial scarring.; Two PAs containing another laminin-1 epitope, YIGSR, are described in Chapter 3. In a negatively charged YIGSR-bearing PA (YIGSR-PA), mNPCs behave as in the IKVAV-bearing PAs, but grow longer neurites possibly due to epitope signaling. A positively charged YIGSR-bearing PA (Pos-YIGSR-PA) does not support mNPC survival. P19 cell line studies and zeta-potential measurements show that cell death is due to the PA substrate's surface charge and is specific to mNPCs.; Mixed IKVAV-PA/YIGSR-PA scaffolds show averaging of cell behavior, while IKVAV-PA/Pos-YIGSR-PA mixtures fail to rescue cell viability. These dual-epitope scaffolds are studied in Chapter 4 by nuclear magnetic resonance (NMR) and CD. The like-charged mixture is composed of single-component fibers forming an interpenetrating network (IPN). The oppositely charged mixture is composed of mixed fibers, as predicted from simulation. Chapter 5 describes model PAs optimized for mixed fiber visualization. A biotin-tagged positively charged PA is mixed with a negatively charged PA and incubated with avidin-functionalized gold nanoparticles. Transmission electron microscopy (TEM) reveals mixed-fiber networks composed of alternating single-PA regions, which could be more bioactive than the IPN scaffolds. Overall, these PA materials are versatile and show promise for SCI repair. Future work could involve addition of more epitopes and further investigation of the self-assembly mechanism.
机译:本文介绍了一套用于脊髓修复(SCI)的肽两亲物(PAs)。这些PA自我:在生理条件下组装成引起宏观凝胶化的纳米纤维。在整个论文中,对控制自组装的氢键,疏水性和静电进行了比较。从材料科学和生物工程的角度探讨了PA的性能。在第2章中,通过流变学研究了三个电荷分布相似的PA的盐引发胶凝作用,每个PA都带有促进神经突生长的层粘连蛋白1表位IKVAV,通过测试类似的PA可以证明,更硬,更亲水的PA凝胶化的速度更慢带有纤连蛋白表位RGD。圆二色性(CD)和浊度表明有核自组装机制,该机制取决于先前存在的聚集体。缓慢的胶凝作用有助于PA注射入小鼠脊髓。用IKVAV-PAs进行的小鼠神经祖细胞(mNPC)研究显示细胞存活,神经突向外生长和选择性神经元分化,可通过预防神经胶质瘢痕形成改善SCI修复。第3章中介绍了两个包含另一个层粘连蛋白1表位的YPAG,两个PA。在带有负电荷的YIGSR的PA(YIGSR-PA)中,mNPC的行为与带有IKVAV的PA相同,但可能由于表位的信号传导而长出了神经突。 。带正电荷的YIGSR的PA(Pos-YIGSR-PA)不支持mNPC生存。 P19细胞系研究和zeta电位测量表明,细胞死亡是由于PA底物的表面电荷所致,并且对mNPC具有特异性。混合的IKVAV-PA / YIGSR-PA支架显示出细胞行为的平均值,而IKVAV-PA / Pos-YIGSR-PA混合物无法挽救细胞活力。这些双表位支架在第4章中通过核磁共振(NMR)和CD进行了研究。带有相同电荷的混合物由形成互穿网络(IPN)的单组分纤维组成。如模拟所预测的,带相反电荷的混合物由混合纤维组成。第5章介绍了为混合光纤可视化优化的模型PA。将生物素标记的带正电荷的PA与带负电荷的PA混合,并与抗生物素蛋白官能化的金纳米颗粒一起孵育。透射电子显微镜(TEM)揭示了由交替的单PA区域组成的混合纤维网络,其生物活性可能比IPN支架更高。总体而言,这些PA材料用途广泛,显示出SCI修复的前景。未来的工作可能涉及添加更多的表位和进一步研究自组装机制。

著录项

  • 作者

    Niece, Krista Lynne.;

  • 作者单位

    Northwestern University.;

  • 授予单位 Northwestern University.;
  • 学科 Engineering Biomedical.; Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 137 p.
  • 总页数 137
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物医学工程;工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号