首页> 外文学位 >Acoustic emission characterization of the microplastic mechanisms of ductile fracture in aluminum 6061.
【24h】

Acoustic emission characterization of the microplastic mechanisms of ductile fracture in aluminum 6061.

机译:铝6061韧性断裂的微塑性机理的声发射表征。

获取原文
获取原文并翻译 | 示例

摘要

Ductile fracture of metals through transgranular microvoid coalescence is recognized as a complex mechanism involving many dynamic and competitive interactions of a wide range of material properties, processes and behavior. A partial list of these would include microstructure, yield strength, strain hardening, stress concentration, particle size and distribution, strain localization and accumulation, and characteristics of the particle-matrix interface. While the understanding of the intricacies surrounding this phenomenon is advancing steadily, it remains founded on the basis that ductile fracture is the end result of three fundamental processes: void nucleation, growth and coalescence. Significant progress has been made in the characterization and modeling of the growth phase of this process; however, the micromechanisms driving nucleation and coalescence are less well understood. An improvement in material design from the standpoint of fracture resistance can be achieved through better comprehension of these void nucleation mechanisms. This research utilizes the acoustic emission phenomena of an aluminum alloy subjected to uniaxial load application in an attempt to characterize the nature of the microplastic events occurring in strain regimes well below the bulk yield response of the material. A distinct relationship between the characteristic acoustic emission response as a function of imposed triaxial constraint is identified for varied precipitation aging times. A fractographic evaluation of the final microvoid morphology suggests a stronger contribution from particle structures to void nucleation under elevated triaxial stress-state conditions.
机译:通过跨晶粒微孔聚结的金属延性断裂被认为是一种复杂的机制,涉及许多动态和竞争性相互作用,这些相互作用和相互作用广泛涉及材料的性质,过程和行为。其中的部分清单包括微观结构,屈服强度,应变硬化,应力集中,粒度和分布,应变局部化和累积以及粒子-基体界面的特征。尽管对围绕这一现象的复杂性的理解正在稳步发展,但它仍然基于韧性断裂是三个基本过程的最终结果的基础:空隙成核,生长和聚结。在该过程的生长阶段的表征和建模方面已经取得了重大进展。但是,驱动成核和聚结的微机制还不太清楚。从抗断裂性的角度出发,可以通过更好地理解这些空隙成核机理来实现材料设计的改进。这项研究利用了承受单轴载荷的铝合金的声发射现象,试图表征在远低于材料的整体屈服响应的应变状态下发生的微塑性事件的性质。对于变化的沉淀老化时间,确定了作为施加的三轴约束的函数的特征声发射响应之间的明显关系。最终微孔形态的分形评估表明,在升高的三轴应力状态条件下,颗粒结构对空核的贡献更大。

著录项

  • 作者

    Cone, Darren M.;

  • 作者单位

    The University of Texas at El Paso.;

  • 授予单位 The University of Texas at El Paso.;
  • 学科 Engineering Metallurgy.; Engineering Materials Science.
  • 学位 M.S.
  • 年度 2006
  • 页码 131 p.
  • 总页数 131
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 冶金工业;工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号