首页> 外文学位 >Cell and tissue mechanics: Self-organized cell motility and three-dimensional epithelial morphogenesis.
【24h】

Cell and tissue mechanics: Self-organized cell motility and three-dimensional epithelial morphogenesis.

机译:细胞和组织力学:自组织的细胞运动和三维上皮形态发生。

获取原文
获取原文并翻译 | 示例

摘要

Biological cells and tissue move and rearrange under the influence of mechanical, locally applied forces. One open question is how such local forces combine together to create large scale motions in cells and tissues for biological functions. This thesis addresses this question in the context of how forces between molecular components lead to polarization and motility for a single cell, and in the context of how forces at the whole-cell level lead to morphogenesis of tissues.;In Chapter 2, we present a mathematical description for the crawling motion of a single cell. This motion arises from the self-organized behavior of molecular components pushing on a cell membrane, which may be thought of as a flexible boundary that responds to contact forces. The molecular components themselves consist of many filaments and motors, coarse grained such that they are described by continuum concentration profiles. This system is intrinsically driven out of thermodynamic equilibrium by active forces that include filament treadmilling and attractive forces generated by motors. However, steady state configurations still exist in which the modeled cell, coupled through a friction coefficient with the outside environment, moves persistently in a single direction. This symmetry broken, moving state results from instabilities of the filament density distribution and in particular regions of parameter space, coexists with symmetric, stationary states, thus making the system capable of spontaneous polarization and bistable in certain regimes.;In Chapter 3, we consider a larger length scale. Specifically, we discuss a different model based on mechanical forces existing at a cellular level and the organization of tissue that results from the application of these forces. The biological system under investigation is the sheet of epithelial cells covering the egg chamber of Drosophila from which two breathing tubes are eventually molded. We adapt a model previously employed in foam and Drosophila wing disc research, use it to model out-of-plane deformations of a sheet of cells, and show that specific patterns of line tension within the sheet, combined with discrete topological rearrangement rules typical of such models, can lead to the formation of tubes. We show that the model supports recent experimental results on this system and that the novel mechanism of tube formation proposed by the experiments can be driven by simple line tension patterning within a sheet.
机译:生物细胞和组织在机械的局部作用力的影响下移动并重新排列。一个悬而未决的问题是,这些局部力如何结合在一起以在细胞和组织中产生大规模的运动以实现生物学功能。本论文在分子成分之间的力如何导致单个细胞的极化和运动,以及在全细胞水平上的力如何导致组织的形态发生的背景下解决了这个问题。对单个单元格爬行运动的数学描述。这种运动是由于分子成分在细胞膜上的自组织行为引起的,该行为可以被认为是对接触力做出反应的柔性边界。分子成分本身由许多细丝和马达组成,它们的粒度很粗,因此可以通过连续浓度曲线来描述。该系统本质上是通过包括丝线踏步和电动机产生的吸引力在内的作用力而脱离热力学平衡的。但是,仍然存在稳态配置,其中通过摩擦系数与外部环境耦合的建模单元在单个方向上持续移动。这种对称的破碎,运动状态是由灯丝密度分布的不稳定性以及特定的参数空间区域导致的,它们与对称的,稳定的状态共存,因此使系统能够在某些情况下自发极化和双稳态。更大的长度刻度。具体而言,我们基于细胞水平上存在的机械力以及因施加这些力而产生的组织结构,讨论了不同的模型。被研究的生物系统是覆盖果蝇卵腔的上皮细胞层,最终从中形成两个呼吸管。我们改编了以前在泡沫和果蝇机翼圆盘研究中使用的模型,用它来模型化一个细胞片的平面外变形,并显示该片内线张力的特定模式,以及典型的离散拓扑重排规则这样的模型,会导致管子的形成。我们表明,该模型支持该系统上的最新实验结果,并且由实验提出的新型管形成机理可以通过在板内进行简单的线张力图案化来驱动。

著录项

  • 作者

    Du, XinXin.;

  • 作者单位

    Princeton University.;

  • 授予单位 Princeton University.;
  • 学科 Biophysics General.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 113 p.
  • 总页数 113
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号