首页> 外文学位 >Plasma diagnostics and modeling of direct current microplasma discharges at atmospheric pressure.
【24h】

Plasma diagnostics and modeling of direct current microplasma discharges at atmospheric pressure.

机译:大气压下直流微等离子体放电的等离子体诊断和建模。

获取原文
获取原文并翻译 | 示例

摘要

High pressure (100s of torr) microplasma (length scale 100s of micrometer) non-equilibrium discharges have potential applications as chemical microreactors, sensors, microelectromechanical systems (MEMS), and excimer radiation sources. Experimental and theoretical studies of these microplasmas can provide critical information on fundamental discharge characteristics, and help extend the window of stable discharge operation. Spatially resolved measurements (resolution ∼ 6 mum) were taken across a 200 mum slot-type microdischarge in atmospheric pressure helium or argon. Small amounts of actinometer gases were added to the flow for optical emission spectroscopy measurements. Gas temperature profiles were determined from N2 emission rotational spectroscopy. Stark splitting of the hydrogen Balmer-beta (Hbeta ) line was used to investigate the electric field distribution in the cathode sheath region. Electron densities were evaluated from the analysis of the spectral line broadenings of Hbeta emission. The measured gas temperature was in the range of 350--650 K in He, and 600--1200 K in Ar, both peaking near the cathode and increasing with power. The electron density in the bulk plasma was in the range (3-7)x1013 cm -3 in He, and (1-4)x1014 cm-3 in Ar. The measured electric field in He peaked at the cathode and decayed to small values over a distance of ∼50 mum (sheath edge) from the cathode.;The experimental data were also used to validate a self-consistent one-dimensional plasma model. By a combination of measurements and simulation it was found that the dominant gas heating mechanism in DC microplasmas was ion Joule heating. Simulation results also predicted the existence of electric field reversals in the negative glow under operating conditions that favor a high electron diffusion flux emanating from the cathode sheath. The electric field adjusted to satisfy continuity of the total current. Also, the electric field in the anode layer was self adjusted to be positive or negative to satisfy the "global" particle balance in the plasma. Gas heating was found to play an important role in shaping the electric field profiles both in the negative glow and the anode layer.;Furthermore, the effect of gas flow on gas temperature in these microplasmas was investigated again by a combination of experiments and simulation. A plasma-gas flow simulation of the microdischarge, including a comprehensive chemistry set, a compressible Navior-Stokes (and mass continuity) equation, and a convective heat transport equation, was performed. The gas temperature was found to decrease with increasing gas flow rate, more so in argon compared to helium. This was consistent with the fact that conductive heat losses dominate in the helium microplasma, while convective heat losses play a major role in the argon microplasma. The experimental measurements of gas temperature spatial distributions as a function of gas flow rate were in good agreement with the simulation predictions.
机译:高压(100s托)微等离子体(长度为100s微米)非平衡放电在化学微反应器,传感器,微机电系统(MEMS)和受激准分子辐射源等方面具有潜在的应用。这些微等离子体的实验和理论研究可提供有关基本放电特性的关键信息,并有助于扩大稳定放电操作的窗口。在大气压氦气或氩气中,通过200毫米槽式微放电进行空间分辨测量(分辨率约6微米)。向流中添加少量的光化计气体,以进行光发射光谱测量。气体温度曲线由N 2发射旋转光谱法确定。氢巴尔默-β(Hbeta)线的斯塔克分裂被用来研究在阴极鞘区域的电场分布。通过对Hβ发射的光谱线展宽的分析来评估电子密度。测得的气体温度在He中为350--650 K,在Ar中为600--1200 K,均在阴极附近达到峰值并随功率而增加。体等离子体中的电子密度在He中为(3-7)x1013 cm -3,在Ar中为(1-4)x1014 cm-3。测得的He中的电场在阴极达到峰值,并在距阴极约50mm(鞘边缘)的距离上衰减为较小的值。;实验数据还用于验证自洽的一维等离子体模型。通过测量和模拟相结合,发现直流微等离子体中主要的气体加热机理是离子焦耳加热。模拟结果还预测,在有利于从阴极鞘层发出的高电子扩散通量的工作条件下,负辉光中存在电场反转。调整电场以满足总电流的连续性。而且,阳极层中的电场被自我调节为正或负,以满足等离子体中的“整体”颗粒平衡。发现气体加热在塑造负辉光和阳极层中的电场分布中起着重要作用。此外,通过实验和模拟相结合,再次研究了气流对这些微等离子体中气体温度的影响。进行了微放电的等离子流模拟,包括综合化学组成,可压缩的Navior-Stokes(和质量连续性)方程以及对流热传输方程。发现气体温度随着气体流速的增加而降低,与氦气相比,氩气的降低幅度更大。这与以下事实相符:传导热损失在氦微等离子体中占主导地位,而对流热损失在氩微等离子体中起主要作用。气体温度空间分布随气体流速变化的实验测量结果与模拟预测吻合良好。

著录项

  • 作者

    Wang, Qiang.;

  • 作者单位

    University of Houston.;

  • 授予单位 University of Houston.;
  • 学科 Engineering Chemical.;Physics Fluid and Plasma.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 179 p.
  • 总页数 179
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号