首页> 外文学位 >The effects of high pressure on the vibrational and magnetic properties of iron-based materials.
【24h】

The effects of high pressure on the vibrational and magnetic properties of iron-based materials.

机译:高压对铁基材料的振动和磁性的影响。

获取原文
获取原文并翻译 | 示例

摘要

High pressure experimental methods are demonstrated for studying pressure-dependent material properties and solid phases unattainable at ambient pressure with synchrotron nuclear resonance techniques.The phonon density of states (DOS) of nanocrystalline 57Fe was measured under pressures up to 28 gigapascals (2.8 x 105 atm) using the nuclear resonant inelastic x-ray scattering (NRIXS) technique. The nanocrystalline material exhibited an enhancement in its DOS at low energies by a factor of 2.2. This enhancement persisted throughout the entire pressure range, even across the pressure-induced bcc-to-hcp phase transformation at 13 GPa. At higher energies, the van Hove singularities in both samples were coincident in energy at all pressures, indicating that interatomic forces in nanocrystalline materials are similar to those in bulk crystals. Subsequent neutron inelastic scattering measurements at ultra-low energies (2 to 18 mueV) also observed enhancement in the vibrational sepctrum of the nanocrystalline material. This enhancement is partly attributed to novel microstructural modes, characterized by cooperative dynamics of individual crystallites.Recent density functional theory (DFT) investigations have identified a static antiferromagnetic structure with negligible hyperfine fields for the high-pressure hcp (epsilon) phase of iron. This structure exhibits a perfect cancellation of core electron polarization at the nucleus by an equally large and oppositely oriented conduction electron polarization. To test this hypothesis, an alloy of composition Fe92Ni8 was subjected to synchrotron Mossbauer spectrometry (SMS) measurements at 20 GPa and 11 K. The addition of nickel was expected to disrupt the precise balance of core and conduction electron polarization in the alloy, and to result in a measurable hyperfine field in the presence of significant magnetic moments. Full-potential DFT calculations in the generalized gradient approximation (GGA) verified this effect for a Fe7Ni1 hcp supercell, which exhibited calculated hyperfine fields of nearly 70 kG. However, SMS measurements were unable to detect a hyperfine field. This disparity may be a result of quantum spin fluctuations on the geometrically frustrated hcp lattice with a period much shorter than the lifetime of the nuclear excited state. Alternately, the result is evidence of a significant flaw in the handling of exchange coupling by the GGA exchange-correlation functional.
机译:演示了高压实验方法,用于研究同步加速器核共振技术在环境压力下无法获得的随压力变化的材料特性和固相。在高达28吉帕斯卡(2.8 x 105 atm)的压力下测量纳米晶57Fe的声子态密度(DOS) ),使用核共振非弹性X射线散射(NRIXS)技术。纳米晶体材料在低能量下的DOS增强了2.2倍。即使在13 GPa的压力诱导的从bcc到hcp的相变过程中,这种增强作用仍在整个压力范围内持续存在。在更高的能量下,两个样品中的范霍夫奇异点在所有压力下的能量均重合,这表明纳米晶体材料中的原子间力类似于块状晶体中的原子间力。随后的超低能量(2至18 mueV)中子非弹性散射测量也观察到纳米晶材料振动隔膜的增强。这种增强部分归因于新颖的微结构模式,其特征在于单个微晶的协同动力学。最近的密度泛函理论(DFT)研究已经确定了铁的高压hcp(ε)相具有可忽略的超精细场的静态反铁磁结构。这种结构通过相等大且方向相反的传导电子极化,完美展现了核中核心电子极化的抵消。为了验证这一假设,对成分为Fe92Ni8的合金在20 GPa和11 K下进行了同步加速器Mossbauer光谱(SMS)测量。预期添加镍会破坏合金中核和传导电子极化的精确平衡,并且当存在明显的磁矩时,会导致可测量的超精细场。广义梯度近似(GGA)中的全势DFT计算验证了Fe7Ni1 hcp超级电池的这种作用,该超级电池表现出近70 kG的计算超精细场。但是,SMS测量无法检测到超精细场。这种差异可能是由于几何受挫的hcp晶格上的量子自旋波动导致的,其周期比核激发态的寿命短得多。或者,结果表明在通过GGA交换相关功能处理交换耦合方面存在重大缺陷。

著录项

  • 作者

    Papandrew, Alexander B.;

  • 作者单位

    California Institute of Technology.;

  • 授予单位 California Institute of Technology.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 128 p.
  • 总页数 128
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号