首页> 外文学位 >Growth, structure and applications of nanorods by glancing angle deposition.
【24h】

Growth, structure and applications of nanorods by glancing angle deposition.

机译:掠角沉积纳米棒的生长,结构和应用。

获取原文
获取原文并翻译 | 示例

摘要

Glancing angle deposition (GLAD) is a thin-film deposition technique where the deposition flux, consisting of atoms and molecules from gas phase, impinges on substrate at oblique angles, resulting in highly under-dense, columnar microstructures which are purposely engineering to achieve novel desired properties. GLAD is a simple, one-step process to obtain many novel nanostructures of current interest.; The primary objective of this thesis is to extend the current capabilities of the GLAD technique for the creation of multi-component nanostructures. It is aimed to study the growth dynamics of nanostructures during GLAD. This work also aims to demonstrate, both theoretically and experimentally, the capabilities and limitations of a novel simultaneously opposing GLAD (SOGLAD) technique by creating branched Cu nanostructures. Two of the potential applications of the nanostructures have been investigated.; It is shown for Cr, Si, and Ta single-component, and Cr-Si multi-component nanorods that growth on flat and patterned substrates results in strikingly different morphologies. This observation was explained on the basis of a competitive growth mode which occurs during the growth process favoring the larger rods to grow at the expense of smaller ones. Substrate patterning, achieved by colloid self-assembly and electron beam lithography, prior to GLAD delays or completely prevents intercolumnar competition.; Intrinsic crystal properties such as stacking faults and three dimensional EhrlichSchwoebel barriers can result in the formation of branched nanostructures during glancing angle deposition. This is demonstrated using a combination of molecular dynamics simulations and GLAD experiments on Cu nanorod arrays. SOGLAD on to a stationery substrate results in the anisotropic broadening in Cu nanorods. A numerical model provides a qualitative understanding of the lateral growth in the nanorods when the deposition is switched from continuous substrate rotation to stationery deposition from opposite sides.; Finally, two practical applications for GLAD nanostructures are presented. GLAD nanosprings and nanorods exhibit a reversible change in resistivity upon loading and unloading, indicating their potential as pressure sensors. It is shown that Si-Au nanorods can be controllably assembled (end-to-end) using biological connector molecules, in particular biotin and streptavidin, which are selectively attached to the Au portion at the end of the nanorods. This new hybrid physical-vapor-deposition/wet-chemistry approach will be useful for assembling complex hierarchical nanoarchitectures including nanohoneycombs, nano-ladders, and 3D nanorod networks, comprised of controlled materials combinations.
机译:掠角沉积(GLAD)是一种薄膜沉积技术,其中由气相中的原子和分子组成的沉积通量以倾斜角入射到基板上,从而形成高度致密的圆柱状微结构,这些结构被有意地工程化以实现新型所需的属性。 GLAD是一种简单的一步方法,可获得许多当前关注的新型纳米结构。本论文的主要目的是扩展GLAD技术用于创建多组分纳米结构的当前功能。目的是研究GLAD期间纳米结构的生长动力学。这项工作还旨在通过创建支链Cu纳米结构,从理论上和实验上证明新型同时对置GLAD(SOGLAD)技术的功能和局限性。已经研究了纳米结构的两个潜在应用。对于Cr,Si和Ta单组分以及Cr-Si多组分纳米棒,显示出在平坦和有图案的基材上生长会导致截然不同的形貌。基于竞争性增长模式解释了该观察结果,该竞争性增长模式发生在生长过程中,有利于较大的杆以较小的杆为代价进行生长。在GLAD延迟之前或通过完全防止柱间竞争,通过胶体自组装和电子束光刻技术实现的基板构图。内在的晶体特性,例如堆垛层错和三维EhrlichSchwoebel势垒,可能导致掠射角沉积过程中形成分支的纳米结构。结合使用分子动力学模拟和GLAD实验对Cu纳米棒阵列进行了证明。 SOGLAD固定在文具基板上会导致Cu纳米棒中的各向异性变宽。当沉积从连续的基板旋转从相对的两面转向固定的沉积时,数值模型提供了对纳米棒横向生长的定性理解。最后,介绍了GLAD纳米结构的两个实际应用。 GLAD纳米弹簧和纳米棒在加载和卸载时均显示出可逆的电阻率变化,表明它们具有作为压力传感器的潜力。已经表明,可以使用生物连接分子,特别是生物素和抗生蛋白链菌素,将Si-Au纳米棒可控地组装(端对端),所述分子分子选择性地附着在纳米棒末端的Au部分。这种新的混合物理气相沉积/湿化学方法将可用于组装复杂的分层纳米体系结构,包括纳米蜂窝,纳米梯子和3D纳米棒网络,这些网络由受控材料组合组成。

著录项

  • 作者单位

    Rensselaer Polytechnic Institute.;

  • 授予单位 Rensselaer Polytechnic Institute.;
  • 学科 Physics Condensed Matter.; Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 104 p.
  • 总页数 104
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号