首页> 外文学位 >Antenna enhanced quantum dot infrared photodetectors.
【24h】

Antenna enhanced quantum dot infrared photodetectors.

机译:天线增强型量子点红外光电探测器。

获取原文
获取原文并翻译 | 示例

摘要

Similar to conventional microwave antennas, optical antennas are playing increasingly important roles in photonic devices covering visible, near infrared (IR), mid-wave and long-wave infrared (MWIR/LWIR), through terahertz (THz) operating frequency regimes. However, due to the ultra-high frequency (30 THz at the wavelength of 10 microm) of electromagnetic (EM) waves in the optical spectral regimes, it is difficult to directly collect electromagnetic waves-generated current through optical antennas. Nevertheless, one can still achieve most of the antenna functionalities through surface plasmonic resonance in metallic antennas, including conversion (i.e. transmission or receiving) between free-space EM waves and localized field, strong EM field enhancement and localization beyond the diffraction limit, and directivity (gain) in transmission or receiving. Such plasmonic optical antennas offer effective tools for numerous applications, including light emission, beam control, beam shaping, sensing and imaging.;For light sensing and imaging applications, the effective light collection and the strong light focusing effect of plasmonic optical antennas not only enhances the photoresponsivity of a photodetector through effective light collection, but also enables high-resolution light sensing and imaging well beyond the diffraction limit of light.;However, due to the surface confinement of plasmonic waves, plasmonic optical antennas interact with photodetectors through their near-field EM components. Therefore, to fully exploit the advantages of plasmonic optical antennas, it is critical to have close interacting antennas and photodetector structures.;In this study, we report a full wavelength dipole antenna integrated with a LWIR quantum dot infrared photodetector (QDIP). We investigate directivity, the polarization dependency of the antenna-coupled QDIP as well as the performance of the device under back-side and front side illumination configurations. The study of back-side illumination configuration for antenna-coupled QDIPs has the great importance of being compatible with the state of the art focal plane array (FPA) fabrication and testing.;We also investigate how different parameters such as the gap size, the period, and the length of the antennas can enhance the photocurrent response of antenna-coupled QDIP. Enhancements of 2-12 times, depending on the size, the period, and orientation of these antennas are being reported. The simulation results strongly support the measured data.
机译:与传统的微波天线类似,光学天线在光子设备中扮演着越来越重要的角色,这些设备通过太赫兹(THz)工作频率范围覆盖可见,近红外(IR),中波和长波红外(MWIR / LWIR)。然而,由于在光谱范围内的电磁(EM)波具有超高频(在10微米的波长处为30THz),因此难以直接收集通过光学天线产生的电磁波产生的电流。尽管如此,仍然可以通过金属天线中的表面等离子体共振来实现大多数天线功能,包括自由空间EM波与局域场之间的转换(即发送或接收),强大的EM场增强和超过衍射极限的局域性以及方向性(获得)传输或接收。此类等离子光天线可为多种应用提供有效的工具,包括光发射,光束控制,光束整形,感测和成像。;对于光感测和成像应用,等离子光天线的有效集光和强大的聚光效果不仅增强了通过有效收集光来实现光探测器的光响应性,但也可以实现远远超出光的衍射极限的高分辨率光感测和成像;然而,由于等离激元波的表面限制,等离激元光学天线通过其近端与光探测器相互作用。现场EM组件。因此,要充分利用等离激元光学天线的优势,至关重要的是要具有紧密相互作用的天线和光电探测器结构。在本研究中,我们报告了集成了LWIR量子点红外光电探测器(QDIP)的全波长偶极天线。我们研究方向性,天线耦合QDIP的极化相关性以及在背面和正面照明配置下的设备性能。对于天线耦合QDIP的背面照明配置的研究具有与现有焦平面阵列(FPA)制造和测试状态兼容的重要性;我们还研究了间隙尺寸,天线长度可以增强天线耦合QDIP的光电流响应。据报道,这些天线的尺寸,周期和方向会提高2至12倍。仿真结果有力地支持了实测数据。

著录项

  • 作者

    Mojaverian, Neda.;

  • 作者单位

    University of Massachusetts Lowell.;

  • 授予单位 University of Massachusetts Lowell.;
  • 学科 Electrical engineering.;Electromagnetics.;Physics.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 124 p.
  • 总页数 124
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号