首页> 外文学位 >On entropy satisfying and maximum-principle-satisfying high-order methods for Fokker-Planck equations.
【24h】

On entropy satisfying and maximum-principle-satisfying high-order methods for Fokker-Planck equations.

机译:Fokker-Planck方程的熵满足和最大原理满足的高阶方法。

获取原文
获取原文并翻译 | 示例

摘要

Computation of Fokker-Planck equations with satisfying long time behavior is important in many applications. In this thesis, we design, analyze and implement entropy satisfying and maximum-principle-satisfying high-order numerical methods to solve the Fokker-Planck equation of the finitely extensible nonlinear elastic (FENE) dumbbell model for polymers, subject to homogeneous fluids, and the reaction-diffusion-advection equation arising in the evolution of biased dispersal of population dynamics. The design of each method is guided to satisfy three main properties, consisting of the nonnegativity principle, the mass conservation and the preservation of nonzero steady states. The relative entropy and the maximum principle are two powerful tools used to evaluate our methods, for instance, the steady state preservation can be ensured if the method is either entropy satisfying or maximum principle satisfying in the sense that the ratio of the solution to the equilibrium will stay in the same range as indicated by the initial data.;These schemes are constructed in several steps, including reformulation of the Fokker-Planck equation into its nonlogarithmic Landau form, spacial discretization by discontinuous Galerken (DG) methods and some Runge-Kutta time discretization. The special form of numerical fluxes motivated by those introduced in [H. Liu and J. Yan, Commun. Comput. Phys. 8(3), 2010, 541-564] is essential to incorporate desired properties into each scheme through choices of flux parameters.;In this thesis, we have obtained the following results.;1. For the Fokker-Planck equation of the FENE model, we propose an entropy satisfying conservative method which preserves all the three desired properties at both semidiscrete and discrete levels. This method is shown to be entropy satisfying in the sense that these schemes satisfy discrete entropy inequalities for both the physical entropy and the quadratic entropy. These ensure that the computed solution is a probability density, and the schemes are entropy stable and preserve the equilibrium solutions.;2. We further develop an entropy satisfying DG method of arbitrary high order. Both semidiscrete and fully discrete methods are shown to satisfy two desired properties: mass conservation and entropy satisfying for the quadratic entropy, therefore preserving the equilibrium solutions. A positive numerical approximation is obtained with the same accuracy as the numerical solution through a reconstruction at the final time.;For both the finite volume scheme and the DG scheme we also prove the convergence of numerical solutions to the equilibrium solution as time tends to infinity. One- and two-dimensional numerical results are provided to demonstrate the good qualities of these schemes and effects of some canonical homogeneous flows.;3. We develop up to third-order accurate DG methods satisfying a strict maximum principle for a class of linear Fokker-Planck equations. A procedure is established to identify an effective test set in each computational cell to ensure the desired bounds of numerical averages during time evolution. This is achievable by properly choosing flux parameters and a positive decomposition of weighted cell averages. Based on this result, a scaling limiter for the DG method with Euler forward time discretization is proposed to solve both one- and multidimensional Fokker-Planck equations. As a consequence, the present scheme preserves steady states and provides a satisfying long time behavior. Numerical tests for the DG method are reported, with applications to polymer models with both Hookean and FENE potentials.;4. For Fokker-Planck equations with reaction such as the biased dispersal model in population dynamics, we develop entropy/energy stable finite difference schemes. For the numerical method to capture the long-time pattern of persistence or extinction, we use the relative entropy when the resource potential is logarithmic and explore the usual energy for other resource potentials. The present schemes are shown to satisfy three important properties of the continuous model for the population density: (i) positivity preserving, (ii) equilibrium preserving and (iii) entropy or energy satisfying. These ensure that our schemes provide a satisfying long-time behavior, thus revealing the desired dispersal pattern. Moreover, we present several numerical results which confirm the second-order accuracy for various resource potentials and underline the efficiency to preserve the large time asymptotic.
机译:满足长时间行为的Fokker-Planck方程的计算在许多应用中都很重要。在本文中,我们设计,分析和实现了满足熵且满足最大原理的高阶数值方法,以求解受均质流体作用的聚合物的有限扩展非线性弹性(FENE)哑铃模型的Fokker-Planck方程。反应扩散对流方程,是由种群动力学的偏向分散演化而产生的。指导每种方法的设计,使其满足三个主要特性,即非负性原理,质量守恒和非零稳态的保持。相对熵和最大值原理是用于评估我们的方法的两个强大工具,例如,如果方法满足熵或最大值原理(从溶液与平衡之比的角度考虑),则可以确保稳态保持这些方案分几个步骤构建,包括将Fokker-Planck方程重新公式化为其非对数的Landau形式,通过不连续Galerken(DG)方法进行空间离散化以及一些Runge-Kutta时间离散化。由[H. Liu和Yan J. Commun。计算物理[8(3),2010,541-564]对于通过选择磁通参数将期望的特性整合到每个方案中至关重要。;在本文中,我们获得了以下结果:1。对于FENE模型的Fokker-Planck方程,我们提出了一种满足保守性的熵方法,该方法同时保留了半离散和离散级别的所有三个所需属性。在这些方案满足物理熵和二次熵的离散熵不等式的意义上,该方法被证明是满足熵的。这些保证了所计算的解是概率密度,并且该方案是熵稳定的并且保持平衡解。2。我们进一步开发了一种满足任意高阶DG的熵的熵。半离散方法和完全离散方法都显示出满足两个期望的性质:质量守恒和熵满足二次熵,因此保留了平衡解。通过最后一次重构获得与数值解相同精度的正数值逼近。对于有限体积方案和DG方案,我们还证明了随着时间趋于无穷大,数值解收敛于平衡解。 。提供一维和二维数值结果,以证明这些方案的优良性质以及某些规范的均匀流的影响。3。我们为一类线性Fokker-Planck方程开发了满足严格的最大原理的三阶精确DG方法。建立一个过程来识别每个计算单元中的有效测试集,以确保在时间演化过程中期望的数值平均值范围。这可以通过适当选择通量参数和加权单元平均的正分解来实现。基于此结果,提出了一种采用Euler前向时间离散化的DG方法的比例限制器,以求解一维和多维Fokker-Planck方程。结果,本方案保持稳态并提供令人满意的长时间行为。报道了DG法的数值测试,并将其应用于具有Hookean和FENE势的聚合物模型; 4。对于具有反应的Fokker-Planck方程,例如种群动态中的偏差分散模型,我们开发了熵/能量稳定有限差分方案。对于捕获持久性或灭绝的长期模式的数值方法,我们在资源势为对数时使用相对熵,并探索其他资源势的常规能量。所示的方案满足人口密度连续模型的三个重要特性:(i)保持阳性,(ii)保持平衡,以及(iii)熵或能量满足。这些确保了我们的方案提供了令人满意的长期性能,从而揭示了所需的分散模式。此外,我们提供了一些数值结果,这些结果证实了各种资源潜力的二阶精度,并强调了保持大时间渐近性的效率。

著录项

  • 作者

    Yu, Hui.;

  • 作者单位

    Iowa State University.;

  • 授予单位 Iowa State University.;
  • 学科 Mathematics.;Genetics.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 182 p.
  • 总页数 182
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:41:00

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号