首页> 外文学位 >Flight dynamics in Drosophila through a dynamically-scaled robotic approach.
【24h】

Flight dynamics in Drosophila through a dynamically-scaled robotic approach.

机译:果蝇通过动态缩放的机器人方法实现飞行动力学。

获取原文
获取原文并翻译 | 示例

摘要

Flies are particularly adept at balancing the competing demands of delay tolerance, performance, and robustness during flight, which invites thoughtful examination of their multimodal feedback architecture. This dissertation examines stabilization requirements for inner-loop feedback strategies in the flapping flight of Drosophila, the fruit fly, against the backdrop of sensorimotor transformations present in the animal. Flies have evolved multiple specializations to reduce sensorimotor latency, but sensory delay during flight is still significant on the timescale of body dynamics. I explored the effect of sensor delay on flight stability and performance for yaw turns using a dynamically-scaled robot equipped with a real-time feedback system that performed active turns in response to measured yaw torque. The results show a fundamental tradeoff between sensor delay and permissible feedback gain, and suggest that fast mechanosensory feedback provides a source of active damping that compliments that contributed by passive effects. Presented in the context of these findings, a control architecture whereby a haltere-mediated inner-loop proportional controller provides damping for slower visually-mediated feedback is consistent with tethered-flight measurements, free-flight observations, and engineering design principles.;Additionally, I investigated how flies adjust stroke features to regulate and stabilize level forward flight. The results suggest that few changes to hovering kinematics are actually required to meet steady-state lift and thrust requirements at different flight speeds, and the primary driver of equilibrium velocity is the aerodynamic pitch moment. This finding is consistent with prior hypotheses and observations regarding the relationship between body pitch and flight speed in fruit flies. The results also show that the dynamics may be stabilized with additional pitch damping, but the magnitude of required damping increases with flight speed. I posit that differences in stroke deviation between the upstroke and downstroke might play a critical role in this stabilization. Fast mechanosensory feedback of the pitch rate could enable active damping, which would inherently exhibit gain scheduling with flight speed if pitch torque is regulated by adjusting stroke deviation. Such a control scheme would provide an elegant solution for flight stabilization across a wide range of flight speeds.
机译:苍蝇尤其擅长于在飞行过程中平衡竞争需求的延误耐受性,性能和鲁棒性,这需要对它们的多峰反馈架构进行仔细的研究。本文在果蝇感觉运动转化的背景下,考察了果蝇果蝇扑翼飞行中内环反馈策略的稳定性要求。苍蝇已经发展出多种专业来减少感觉运动潜伏期,但是飞行过程中的感觉延迟对人体动力学的时间尺度仍然很重要。我使用装有实时反馈系统的动态缩放机器人探索了传感器延迟对偏航转弯飞行稳定性和性能的影响,该机器人实时响应系统,以响应测得的偏航扭矩进行主动转弯。结果显示了传感器延迟和允许的反馈增益之间的基本权衡,并表明快速的机械感测反馈提供了主动阻尼的来源,该阻尼是被动效应的补充。在这些发现的背景下提出了一种控制体系结构,通过这种结构,hal绳介导的内环比例控制器为较慢的视觉介导的反馈提供阻尼,这与系留飞行测量,自由飞行观察和工程设计原理是一致的。我研究了苍蝇如何调节行程特征以调节和稳定水平向前飞行。结果表明,为满足不同飞行速度下的稳态升力和推力要求,对悬停运动学的更改几乎不需要,平衡速度的主要驱动力是空气动力俯仰力矩。这一发现与先前关于果蝇体高与飞行速度之间的关系的假设和观察结果一致。结果还表明,通过增加俯仰阻尼可以使动力学稳定,但是所需阻尼的大小会随着飞行速度的增加而增加。我认为上冲程和下冲程之间的冲程偏差差异可能在这种稳定中起关键作用。俯仰率的快速机械感测反馈可以实现主动阻尼,如果通过调节行程偏差来调节俯仰扭矩,则固有地会表现出与飞行速度有关的增益调度。这样的控制方案将为在各种飞行速度范围内的飞行稳定性提供一个优雅的解决方案。

著录项

  • 作者

    Elzinga, Michael J.;

  • 作者单位

    California Institute of Technology.;

  • 授予单位 California Institute of Technology.;
  • 学科 Mechanical engineering.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 118 p.
  • 总页数 118
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号