首页> 外文学位 >Coupled space-angle adaptivity and goal-oriented error control for radiation transport calculations.
【24h】

Coupled space-angle adaptivity and goal-oriented error control for radiation transport calculations.

机译:耦合的空间角度适应性和面向目标的误差控制,用于辐射传输计算。

获取原文
获取原文并翻译 | 示例

摘要

This research is concerned with the self-adaptive numerical solution of the neutral particle radiation transport problem. Radiation transport is an extremely challenging computational problem since the governing equation is seven-dimensional (3 in space, 2 in direction, 1 in energy, and 1 in time) with a high degree of coupling between these variables. If not careful, this relatively large number of independent variables when discretized can potentially lead to sets of linear equations of intractable size. Though parallel computing has allowed the solution of very large problems, available computational resources will always be finite due to the fact that ever more sophisticated multiphysics models are being demanded by industry. There is thus the pressing requirement to optimize the discretizations so as to minimize the effort and maximize the accuracy.; One way to achieve this goal is through adaptive phase-space refinement. Unfortunately, the quality of discretization (and its solution) is, in general, not known a priori; accurate error estimates can only be attained via the a posteriori error analysis. In particular, in the context of the finite element method, the a posteriori error analysis provides a rigorous error bound. The main difficulty in applying a well-established a posteriori error analysis and subsequent adaptive refinement in the context of radiation transport is the strong coupling between spatial and angular variables. This research attempts to address this issue within the context of the second-order, even-parity form of the transport equation discretized with the finite-element spherical harmonics method.; The objective of this thesis is to develop a posteriori error analysis in a coupled space-angle framework and an efficient adaptive algorithm. Moreover, the mesh refinement strategy which is tuned for minimizing the error in the target engineering output has been developed by employing the dual argument of the problem. This numerical framework has been implemented in the general-purpose neutral particle code EVENT for assessment.
机译:这项研究涉及中性粒子辐射传输问题的自适应数值解。辐射传输是一个极具挑战性的计算问题,因为控制方程是七维的(空间为3,方向为2,能量为1,时间为1),这些变量之间具有高度的耦合性。如果不谨慎的话,离散化时相对大量的自​​变量可能会导致产生难以解决的线性方程组。尽管并行计算已允许解决非常大的问题,但由于行业需要越来越复杂的多物理场模型,因此可用的计算资源将始终是有限的。因此,迫切需要优化离散化,以最小化工作量并最大化准确性。实现此目标的一种方法是通过自适应相空间细化。不幸的是,一般来说,离散化的质量(及其解决方案)不是先验的。只能通过后验误差分析来获得准确的误差估计。特别是在有限元方法中,后验误差分析提供了严格的误差范围。应用完善的后验误差分析和随后在辐射传输中进行自适应优化的主要困难是空间和角度变量之间的强耦合。本研究试图在用有限元球谐法离散化的输运方程的二阶偶校验形式的背景下解决这个问题。本文的目的是开发一种在空间角耦合框架下的后验误差分析和有效的自适应算法。此外,通过采用问题的双重论证,已经开发出了为最小化目标工程输出中的误差而调整的网格细化策略。此数值框架已在通用中性粒子代码EVENT中实施以进行评估。

著录项

  • 作者

    Park, HyeongKae.;

  • 作者单位

    Georgia Institute of Technology.;

  • 授予单位 Georgia Institute of Technology.;
  • 学科 Engineering Nuclear.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 146 p.
  • 总页数 146
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 原子能技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号