首页> 外文学位 >Large-Scale Optimization of Complex Separator and Reactor Networks.
【24h】

Large-Scale Optimization of Complex Separator and Reactor Networks.

机译:复杂分离器和反应器网络的大规模优化。

获取原文
获取原文并翻译 | 示例

摘要

The generation of globally optimal designs which can minimize capital and/or operating cost expenditures is a highly sought after objective within the chemical industry. A methodology which can systematically generate such globally optimal solutions to objective functions commonly encountered in the chemical industry is the IDEAS framework. The IDEAS framework decomposes a process network into an operator, OP network, where the unit operations (reactors, distillation columns, heat exchangers, etc.) occur, and a distribution, DN network, where the flow operations (mixing, splitting, recycling, and bypass) occur. The optimal process network structure is identified through solution of an infinite linear program (ILP) that is formulated within the IDEAS framework. The ILP's solution is approximated by finite dimensional linear programs of ever increasing size. The global optimization of complex, multi-pressure distillation networks for the separation of azeotropic mixtures using the IDEAS framework, is presented in chapter 1. The objective function in this case aims at minimizing total network flow in an effort to directly (indirectly) reduce capital (operating) costs. The global optimization of chemical reactor networks is presented in chapter 2-4. There, interesting properties relating to energy consumption and entropy generation for isothermal/isobaric reactor networks are described in the context of the attainable region (AR). Given certain assumptions, namely that all reactors are either of the endothermic or exothermic kind, a proof is presented that energy consumption and entropy generation can be rigorously identified in the infinite space of chemical reactors, independently of the network's internals (chapter 2). For the case of isothermal/isobaric chemical reactor networks where both endothermic and exothermic reactors participate in delivering the desired outlet product composition, entropy generation minimization is synonymous with an objective function of minimum hot/cold utility cost, with the cost coefficient of hot (cold) streams being the inverse of the temperature of the cold (hot) reservoir to which it adds (removes) energy. For this scenario, the network's internal structure plays a key role in determining the optimal reactor network, which is determined using the IDEAS framework (chapter 3). A novel method to identify the sequence of isothermal mixed flow reactors (CSTR's) which globally minimizes a reactor residence time dependent objective function (able to represent such objectives as capital cost, volume, or total annualized cost), subject to a constraint dependent on the reactor sequence's exit concentrations, is presented in chapter 4. Finally, chapter 5 discusses a novel, heat-integrated, pressure-temperature-swing-adsorption (PTSA) process for the capture of CO2 from the flue gas of fossil-fueled power plants using MgO sorbents.
机译:可以使资本和/或运营成本支出最小化的全球最佳设计的产生是化学工业中的高度追求的目标。 IDEAS框架是可以系统地针对化工行业中常见的目标功能生成此类全局最优解决方案的方法。 IDEAS框架将过程网络分解为操作员OP网络(在其中进行单元操作(反应器,蒸馏塔,热交换器等))和分配DN网络(在其中进行流操作(混合,分离,再循环,和旁路)。通过在IDEAS框架内制定的无限线性程序(ILP)的解决方案,可以确定最佳的过程网络结构。 ILP的解决方案可以通过大小不断增加的有限维线性程序来近似。第1章介绍了使用IDEAS框架分离共沸混合物的复杂多压力蒸馏网络的全局优化。在这种情况下,目标功能旨在最大程度地减少总网络流量,从而直接(间接)减少资本(运营)成本。第2-4章介绍了化学反应器网络的全局优化。在此,在可达到区域(AR)的背景下描述了与等温/等压反应堆网络的能耗和熵产生有关的有趣属性。给定某些假设,即所有反应器均为吸热或放热类型,可以证明在化学反应器的无限空间中可以严格确定能量消耗和熵的产生,而与网络的内部结构无关(第2章)。对于等温/等压化学反应器网络,其中吸热和放热反应器都参与提供所需的出口产物组成,熵产生最小化是最小热/冷公用事业成本和热(冷)成本系数的目标函数的代名词。 )流是向其添加(除去)能量的冷(热)储层温度的倒数。对于这种情况,网络的内部结构在确定最佳反应堆网络方面起着关键作用,这是使用IDEAS框架确定的(第3章)。一种确定等温混合流反应器(CSTR)顺序的新颖方法,该方法可将依赖于反应堆停留时间的目标函数(能够表示诸如资本成本,数量或总年度成本之类的目标)全局最小化,并受取决于第4章介绍了反应堆序列的出口浓度。最后,第5章讨论了一种新颖的,热集成的,压力-温度-摆动-吸附(PTSA)工艺,用于从化石燃料发电厂的烟气中捕集CO2,方法是使用MgO吸附剂。

著录项

  • 作者

    Ghougassian, Paul G.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Engineering Chemical.;Operations Research.;Applied Mathematics.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 278 p.
  • 总页数 278
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号