首页> 外文学位 >High pressure gas filled RF cavity beam test at the Fermilab Mucool test area.
【24h】

High pressure gas filled RF cavity beam test at the Fermilab Mucool test area.

机译:在Fermilab Mucool测试区进行的高压充气RF腔束测试。

获取原文
获取原文并翻译 | 示例

摘要

With a new generation of lepton colliders being conceived, muons have been proposed as an alternative particle to electrons. Muons lose less energy to synchrotron radiation and a Muon Collider can provide luminosity within a smaller energy range than a comparable electron collider. This allows a circular collider to be built. As part of the accelerator, it would also be possible to allow the muons to decay to study neutrinos.;Because the muon is an unstable particle, a muon beam must be cooled and accelerated within a short amount of time. Muons are generated with a huge phase space, so radio frequency cavities placed in strong magnetic fields are required to bunch, focus, and accelerate the muons. Unfortunately, traditional vacuum RF cavities have been shown to break down in the magnetic fields necessary.;To successfully operate RF cavities in strong magnetic fields, the cavity can be filled with a high pressure gas in order to mitigate breakdown. The gas has the added benefit of providing cooling for the beam. The electron-ion plasma created in the cavity by the beam absorbs energy and degrades the accelerating electric field of the cavity. As electrons account for the majority of the energy loss in the cavity, their removal in a short time is highly desirable. The addition of an electronegative dopant gas can greatly decrease the lifetime of an electron in the cavity.;Measurements in pure hydrogen of the energy consumption of electrons in the cavity range in 10-18 and 10-16 joules per RF cycle per electron. When hydrogen doped with dry air is used, measurements of the power consumption indicate an energy loss range of 10-20 to 10-18 joules per RF cycle per ion, two orders of magnitude improvement over non-doped measurements. The lifetime of electrons in a mixture of hydrogen gas and dry air has been measured from < 1 ns, up to 200 ns. The results extrapolated to the parameters of a Neutrino Factory and Muon Collider indicate that a high pressure gas filled RF cavity will work in a cooling-channel for either machine.
机译:随着新一代轻子对撞机的构想,提出了介子作为电子的替代粒子。 μ子因同步加速器辐射而损失的能量更少,与同类电子对撞机相比,μ子对撞机可在更小的能量范围内提供光度。这允许构建圆形对撞机。作为加速器的一部分,还可以让介子衰变以研究中微子。由于介子是不稳定的粒子,介子束必须在短时间内冷却并加速。产生的μ子具有巨大的相空间,因此需要放置在强磁场中的射频腔来聚集,聚焦和加速μ子。不幸的是,已经显示出传统的真空RF腔在必要的磁场中会破裂。为了在强磁场中成功操作RF腔,可以在腔中填充高压气体以减轻击穿。气体具有为光束提供冷却的额外好处。由电子束在空腔中产生的电子离子等离子体吸收能量并降低空腔的加速电场。由于电子占腔中能量损失的大部分,因此非常需要在短时间内将其去除。负电性掺杂气体的添加会大大缩短空腔中电子的寿命。在纯氢中,空腔中电子的能量消耗的测量范围为每个电子每个RF周期10-18和10-16焦耳。当使用掺杂有干燥空气的氢气时,功率消耗的测量结果表明每个离子每个RF循环的能量损失范围为10-20至10-18焦耳,比未掺杂的测量结果提高了两个数量级。测量的氢气和干燥空气混合物中电子的寿命为<1 ns至200 ns。外推到Neutrino工厂和Muon Collider的参数的结果表明,高压气体填充的RF腔将在任一机器的冷却通道中工作。

著录项

  • 作者

    Freemire, Ben.;

  • 作者单位

    Illinois Institute of Technology.;

  • 授予单位 Illinois Institute of Technology.;
  • 学科 Physics Elementary Particles and High Energy.;Physics Fluid and Plasma.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 209 p.
  • 总页数 209
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号