首页> 外文学位 >Control Applications for Smart Systems Exhibiting Hysteretic Nonlinearities.
【24h】

Control Applications for Smart Systems Exhibiting Hysteretic Nonlinearities.

机译:表现滞后非线性的智能系统的控制应用。

获取原文
获取原文并翻译 | 示例

摘要

Smart materials offer unique transduction capabilities, making them attractive for use in actuators for a wide range of existing and emerging applications. Meeting high performance objectives which fully utilize these capabilities requires control designs which account for the rate-dependent hysteresis and creep inherent to the materials. Using the Homogenized Energy Model (HEM) to quantify this behavior, this dissertation examines the problem of developing and implementing tracking control algorithms that prescribe the output trajectory of a ferroelectric actuator. We summarize the HEM and describe its numerical approximation. Inverse compensation is a standard technique for systems with inputs preceded by hysteresis operators such as Preisach or Prandtl-Ishlinskii models. By compensating for the hysteresis using such an algorithm, design is simplified by permitting the use of linear or simplified nonlinear controllers. We develop an inversion algorithm for the compensation of the HEM, providing compensation not only for the effects of hysteresis, but also for input rate-dependence and creep. The computational cost of the algorithm is bounded in terms of the computational cost of computing the HEM forward in time. Simulation results demonstrate the effectiveness of the algorithm for several variations of the HEM. While the inverse compensation algorithm attenuates the effects of hysteresis and other nonlinear behaviors in the system, it does not eliminate them, nor does it account for modeling error. To accommodate these non-ideal terms in the inverse-compensated system, a sliding mode controller is designed. Sliding mode controls specify discontinuous control laws which are capable of tracking a reference trajectory in the presence of bounded model uncertainties like the inversion error and modeling error. Simulation results verify the expected behavior of the resulting closed loop system. Experimental results of a related controller for a shape memory alloy system which uses a novel method of determining the controller parameters are also presented. The sliding mode controller achieves robust tracking in the sense that good tracking performance is achieved even in the presence of model uncertainties as long as bounds on the uncertainties are known and high input activity due to the discontinuous control law can be tolerated. Adaptive control takes a different approach to dealing with uncertainty in a system. An adaptive control law assumes that a system is adequately modeled but is uncertain due to model parameters which are imperfectly identified or slowly-varying. By extending the state of the model to include estimates of these model parameters, an adaptation law is developed which can adjust the estimates online and yield good tracking results. We improve upon a previously developed adaptive control algorithm for systems with unknown hysteresis by adding terms to the adaptation law to accelerate convergence.;The improved convergence is verified by simulation results. The field of uncertainty quantification has experienced rapid growth, providing many techniques for efficiently propagating parametric uncertainty through a dynamic model. Until recently, these techniques have largely been limited to analyzing or predicting the effects of uncertainties on model outputs. Recent research has investigated the combination of efficient methods for uncertainty propagation using generalized polynomial chaos (GPC) expansions with control parameterization methods. This results in a nonlinear program which determines optimal controls that minimize some choice of statistical norm, such as average output error or output error variance. We apply such an approach to the tracking control of a ferroelectric actuator. This implementation framework provides a first step towards using quantitative knowledge of system uncertainty to improve the control of hysteretic smart systems, with the simulation results suggesting research directions which may improve the usefulness of such an approach.
机译:智能材料具有独特的转换功能,使其很适合用于多种现有和新兴应用的执行器。要达到充分利用这些功能的高性能目标,就需要进行控制设计,这些控制设计要考虑到材料固有的速率相关的磁滞和蠕变。本文使用均质能量模型(HEM)来量化这种行为,研究了开发和实现跟踪控制算法的问题,该算法规定了铁电致动器的输出轨迹。我们总结了HEM并描述了其数值逼近。对于输入带有滞后运算符(例如Preisach或Prandtl-Ishlinskii模型)的系统,逆补偿是一种标准技术。通过使用这种算法补偿磁滞,可以通过允许使用线性或简化的非线性控制器来简化设计。我们开发了一种用于HEM补偿的反演算法,不仅可以补偿磁滞的影响,还可以补偿输入速率相关性和蠕变。就及时向前计算HEM的计算成本而言,该算法的计算成本受到限制。仿真结果证明了该算法对于HEM的多种变体的有效性。尽管逆向补偿算法会减弱系统中的磁滞和其他非线性行为的影响,但它并不能消除它们,也不能解决建模误差。为了将这些非理想项包含在逆补偿系统中,设计了滑模控制器。滑模控制指定了不连续的控制律,这些规律可以在存在模型不确定性(如反演误差和建模误差)的情况下跟踪参考轨迹。仿真结果验证了所得闭环系统的预期性能。还介绍了用于形状记忆合金系统的相关控制器的实验结果,该控制器使用一种确定控制器参数的新方法。滑模控制器在某种意义上实现了鲁棒的跟踪,即使在存在模型不确定性的情况下也可以实现良好的跟踪性能,只要知道不确定性的界限,并且可以容忍由于不连续控制律导致的高输入活动即可。自适应控制采用不同的方法来处理系统中的不确定性。自适应控制定律假设系统已被充分建模,但由于模型参数不完全识别或变化缓慢而不确定。通过扩展模型的状态以包括这些模型参数的估计值,开发了一种适应法则,可以在线调整估计值并产生良好的跟踪结果。通过在自适应律中增加项以加速收敛,我们对先前开发的具有未知滞后的系统的自适应控制算法进行了改进。不确定性量化领域经历了快速增长,提供了许多通过动态模型有效传播参数不确定性的技术。直到最近,这些技术仍主要限于分析或预测不确定性对模型输出的影响。最近的研究已经研究了使用广义多项式混沌(GPC)展开的不确定性传播有效方法与控制参数化方法的组合。这样就产生了一个非线性程序,该程序可以确定最佳控制,从而将统计范数的某些选择(例如平均输出误差或输出误差方差)最小化。我们将这种方法应用于铁电致动器的跟踪控制。该实现框架为使用系统不确定性的定量知识来改善磁滞智能系统的控制提供了第一步,仿真结果表明了研究方向,可能会改善这种方法的实用性。

著录项

  • 作者

    McMahan, Jerry A., Jr.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Applied Mathematics.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 134 p.
  • 总页数 134
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号