首页> 外文学位 >Optimizing Throughput and Power Consumption of Graphics Processing Units (GPUs).
【24h】

Optimizing Throughput and Power Consumption of Graphics Processing Units (GPUs).

机译:优化图形处理单元(GPU)的吞吐量和功耗。

获取原文
获取原文并翻译 | 示例

摘要

Although they were originally developed for processing computer graphics, modern GPUs are able to execute general-purpose applications requiring high computational throughput ability. The major improvement in GPU's throughput has been achieved by integrating more cores and operating them at higher frequency with higher on-chip interconnects and off-chip memory bandwidth. However, GPUs also consume a substantial amount of power due to many fast cores, limiting further throughput improvement under a given power constraint. Furthermore, GPUs began to be used for mobile computing devices operating under stringent power and energy constraints. Therefore, it is critical to make GPUs power-efficient. In this dissertation, I propose novel techniques that can maximize the throughput or minimize power consumption of GPUs under a given power or throughput constraint. The techniques are motivated by the fact that GPGPU applications exhibit the maximum throughput or minimum power consumption depending on hardware configuration (i.e., the number of running cores) and operating conditions (i.e., voltage and frequency). The proposed approaches use adaptive runtime algorithms that can determine the optimal hardware configuration and operating conditions to either maximize throughput or minimize power consumption for a given application. As technology is scaled down, increasing within-die (WID) process variations and decreasing physical size of individual cores lead to notable frequency and leakage power variations among cores in a die. Such core-to-core (C2C) frequency and power variations can significantly affect the maximum operating frequency (Fmax) of many-core processors like GPUs. The slowest core in a die often limits the Fmax of a GPU while the remaining faster cores consume more leakage power because the slow and fast cores have very different transistor characteristics. In this dissertation, I improve throughput of GPUs by exploiting WID C2C frequency and power variations. GPGPU applications have very rare synchronizations among their cores, enabling a GPU to operate its cores at their own Fmax with little synchronization overhead. The proposed approach is to allow independent clock frequencies among cores using per-core phase-locked loop (PLL) circuit to maximize the throughput. In addition, I observe that problem-size and/or memory-bound applications do not benefit from many cores. Thus, I improve the throughput of such applications by disabling the slow cores that limit the Fmax of a GPU. Finally, I further improve throughput by incorporating existing spatial multitasking techniques with per-core frequency assignment. This technique uses application characteristics to determine core assignments taking advantage of WID variations.
机译:尽管它们最初是为处理计算机图形而开发的,但现代GPU能够执行需要高计算吞吐量的通用应用程序。通过集成更多内核并以更高的频率,更高的片上互连和片外存储器带宽来实现GPU吞吐量的重大改善。但是,由于许多快速内核,GPU还消耗大量功率,从而在给定的功率约束下限制了吞吐量的进一步提高。此外,GPU开始用于在严格的功率和能量约束下运行的移动计算设备。因此,使GPU节能至关重要。在本文中,我提出了一种新颖的技术,可以在给定的功率或吞吐量约束下最大化GPU的吞吐量或最小化功耗。 GPGPU应用程序根据硬件配置(即运行内核的数量)和工作条件(即电压和频率)表现出最大的吞吐量或最小的功耗,从而推动了这些技术的发展。所提出的方法使用自适应运行时算法,该算法可以确定最佳硬件配置和操作条件,以使给定应用的吞吐量最大化或功耗最小。随着技术规模的缩小,管芯内(WID)工艺变化的增加和单个核的物理尺寸的减小导致管芯内各个核之间的频率和泄漏功率显着变化。这样的内核到内核(C2C)频率和功率变化会严重影响GPU等许多内核处理器的最大工作频率(Fmax)。管芯中最慢的内核通常会限制GPU的Fmax,而其余的较快内核则消耗更多的泄漏功率,因为​​慢和快内核具有非常不同的晶体管特性。本文通过利用WID C2C频率和功率变化来提高GPU的吞吐量。 GPGPU应用程序在其内核之间具有非常罕见的同步,从而使GPU能够以自己的Fmax操作其内核,而几乎没有同步开销。所提出的方法是允许使用每核锁相环(PLL)电路的核之间独立的时钟频率,以最大化吞吐量。此外,我观察到问题大小和/或内存受限的应用程序无法从许多内核中受益。因此,我通过禁用限制GPU Fmax的慢速内核来提高此类应用程序的吞吐量。最后,我通过将现有的空间多任务技术与每核频率分配结合在一起,进一步提高了吞吐量。该技术使用应用程序特征来确定WID变化带来的核心分配。

著录项

  • 作者

    Lee, Jung Seob.;

  • 作者单位

    The University of Wisconsin - Madison.;

  • 授予单位 The University of Wisconsin - Madison.;
  • 学科 Engineering Computer.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 127 p.
  • 总页数 127
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号