首页> 外文学位 >Chaotic oscillations in CMOS integrated circuits.
【24h】

Chaotic oscillations in CMOS integrated circuits.

机译:CMOS集成电路中的混沌振荡。

获取原文
获取原文并翻译 | 示例

摘要

Chaos is a purely mathematical term, describing a signal that is aperiodic and sensitive to initial conditions, but deterministic. Yet, engineers usually see it as an undesirable effect to be avoided in electronics. The first part of the dissertation deals with chaotic oscillation in complementary metal-oxide-semiconductor integrated circuits (CMOS ICs) as an effect behavior due to high power microwave or directed electromagnetic energy source. When the circuit is exposed to external electromagnetic sources, it has long been conjectured that spurious oscillation is generated in the circuits. In the first part of this work, we experimentally and numerically demonstrate that these spurious oscillations, or out-of-band oscillations are in fact chaotic oscillations. In the second part of the thesis, we exploit a CMOS chaotic oscillator in building a cryptographic source, a random number generator.;We first demonstrate the presence of chaotic oscillation in standard CMOS circuits. At radio frequencies, ordinary digital circuits can show unexpected nonlinear responses. We evaluate a CMOS inverter coupled with electrostatic discharging (ESD) protection circuits, designed with 0.5 microm CMOS technology, for their chaotic oscillations. As the circuit is driven by a direct radio frequency injection, it exhibits a chaotic dynamics, when the input frequency is higher than the typical maximum operating frequency of the CMOS inverter. We observe an aperiodic signal, a broadband spectrum, and various bifurcations in the experimental results. We analytically discuss the nonlinear physical effects in the given circuit : ESD diode rectification, DC bias shift due to a non-quasi static regime operation of the ESD PN-junction diode, and a nonlinear resonant feedback current path. In order to predict these chaotic dynamics, we use a transistor-based model, and compare the model's performance with the experimental results. In order to verify the presence of chaotic oscillations mathematically, we build on an ordinary differential equation model with the circuit-related nonlinearities. We then calculate the largest Lyapunov exponents to verify the chaotic dynamics. The importance of this work lies in investigating chaotic dynamics of standard CMOS ICs that has long been conjectured. In doing so, we experimentally and numerically give evidences for the presence of chaotic oscillations.;We then report on a random number generator design, in which randomness derives from a Boolean chaotic oscillator, designed and fabricated as an integrated circuit. The underlying physics of the chaotic dynamics in the Boolean chaotic oscillator is given by the Boolean delay equation. According to numerical analysis of the Boolean delay equation, a single node network generates chaotic oscillations when two delay inputs are incommensurate numbers and the transition time is fast. To test this hypothesis physically, a discrete Boolean chaotic oscillator is implemented. Using a CMOS 0.5 microm process, we design and fabricate a CMOS Boolean chaotic oscillator which consists of a core chaotic oscillator and a source follower buffer. Chaotic dynamics are verified using time and frequency domain analysis, and the largest Lyapunov exponents are calculated. The measured bit sequences do make a suitable randomness source, as determined via National Institute of Standards and Technology (NIST) standard statistical tests version 2.1.
机译:混沌是一个纯粹的数学术语,用于描述非周期性且对初始条件敏感但具有确定性的信号。但是,工程师通常将其视为在电子产品中应避免的不良影响。论文的第一部分处理互补金属氧化物半导体集成电路(CMOS IC)中的混沌振荡,这是由于大功率微波或定向电磁能量源引起的效应行为。长期以来,人们一直认为,当电路暴露于外部电磁源时,电路中会产生寄生振荡。在这项工作的第一部分中,我们通过实验和数值方法证明了这些杂散振荡或带外振荡实际上是混沌振荡。在论文的第二部分中,我们利用CMOS混沌振荡器来构建密码源,即随机数发生器。我们首先证明了标准CMOS电路中混沌振荡的存在。在射频下,普通的数字电路会显示出意外的非线性响应。我们评估了结合了采用0.5微米CMOS技术设计的静电放电(ESD)保护电路的CMOS反相器的混沌振荡。由于该电路是由直接射频注入驱动的,因此当输入频率高于CMOS反相器的典型最大工作频率时,它会表现出混沌动态。我们在实验结果中观察到非周期性信号,宽带频谱和各种分歧。我们分析性地讨论了给定电路中的非线性物理效应:ESD二极管整流,由于ESD PN结二极管的非准静态工作而引起的DC偏置偏移以及非线性谐振反馈电流路径。为了预测这些混沌动力学,我们使用基于晶体管的模型,并将该模型的性能与实验结果进行比较。为了数学上验证混沌振荡的存在,我们建立了一个常微分方程模型,该模型具有与电路有关的非线性。然后,我们计算最大的Lyapunov指数以验证混沌动力学。这项工作的重要性在于调查长期以来人们一直猜测的标准CMOS IC的混沌动力学。这样,我们在实验和数值上给出了混沌振荡的证据。然后,我们报告了一个随机数发生器的设计,其中随机性来自布尔混沌振荡器,被设计和制造为集成电路。布尔延迟振荡器给出了布尔混沌振荡器中混沌动力学的基本物理原理。根据布尔延迟方程的数值分析,当两个延迟输入的数量不相等且过渡时间很快时,单节点网络会产生混沌振荡。为了从物理上检验该假设,实现了离散布尔混沌振荡器。我们使用CMOS 0.5微米工艺,设计并制造了一个CMOS布尔型混沌振荡器,该振荡器由一个核心混沌振荡器和一个源跟随器缓冲器组成。使用时域和频域分析验证了混沌动力学,并计算了最大的李雅普诺夫指数。通过国家标准技术研究院(NIST)标准统计测试版本2.1确定,所测量的比特序列确实提供了合适的随机性源。

著录项

  • 作者

    Park, Myunghwan.;

  • 作者单位

    University of Maryland, College Park.;

  • 授予单位 University of Maryland, College Park.;
  • 学科 Engineering Electronics and Electrical.;Physics Electricity and Magnetism.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 140 p.
  • 总页数 140
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:40:54

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号