首页> 外文学位 >A mechanism design approach to bandwidth allocation in tactical data networks.
【24h】

A mechanism design approach to bandwidth allocation in tactical data networks.

机译:一种战术数据网络中带宽分配的机制设计方法。

获取原文
获取原文并翻译 | 示例

摘要

The defense sector is undergoing a phase of rapid technological advancement, in the pursuit of its goal of information superiority. This goal depends on a large network of complex interconnected systems - sensors, weapons, soldiers - linked through a maze of heterogeneous networks. The sheer scale and size of these networks prompt behaviors that go beyond conglomerations of systems or `system-of-systems'. The lack of a central locus and disjointed, competing interests among large clusters of systems makes this characteristic of an Ultra Large Scale (ULS) system. These traits of ULS systems challenge and undermine the fundamental assumptions of today's software and system engineering approaches. In the absence of a centralized controller it is likely that system users may behave opportunistically to meet their local mission requirements, rather than the objectives of the system as a whole. In these settings, methods and tools based on economics and game theory (like Mechanism Design) are likely to play an important role in achieving globally optimal behavior, when the participants behave selfishly. Against this background, this thesis explores the potential of using computational mechanisms to govern the behavior of ultra-large-scale systems and achieve an optimal allocation of constrained computational resources.;Our research focusses on improving the quality and accuracy of the common operating picture through the efficient allocation of bandwidth in tactical data networks among self-interested actors, who may resort to strategic behavior dictated by self-interest. This research problem presents the kind of challenges we anticipate when we have to deal with ULS systems and, by addressing this problem, we hope to develop a methodology which will be applicable for ULS system of the future. We build upon the previous works which investigate the application of auction-based mechanism design to dynamic, performance-critical and resource-constrained systems of interest to the defense community.;In this thesis, we consider a scenario where a number of military platforms have been tasked with the goal of detecting and tracking targets. The sensors onboard a military platform have a partial and inaccurate view of the operating picture and need to make use of data transmitted from neighboring sensors in order to improve the accuracy of their own measurements. The communication takes place over tactical data networks with scarce bandwidth. The problem is compounded by the possibility that the local goals of military platforms might not be aligned with the global system goal. Such a scenario might occur in multi-flag, multi-platform military exercises, where the military commanders of each platform are more concerned with the well-being of their own platform over others. Therefore there is a need to design a mechanism that efficiently allocates the flow of data within the network to ensure that the resulting global performance maximizes the information gain of the entire system, despite the self-interested actions of the individual actors.;We propose a two-stage mechanism based on modified strictly-proper scoring rules, with unknown costs, whereby multiple sensor platforms can provide estimates of limited precisions and the center does not have to rely on knowledge of the actual outcome when calculating payments. In particular, our work emphasizes the importance of applying robust optimization techniques to deal with the uncertainty in the operating environment. We apply our robust optimization - based scoring rules algorithm to an agent-based model framework of the combat tactical data network, and analyze the results obtained.;Through the work we hope to demonstrate how mechanism design, perched at the intersection of game theory and microeconomics, is aptly suited to address one set of challenges of the ULS system paradigm - challenges not amenable to traditional system engineering approaches.
机译:为了实现其信息优势,国防部门正处于技术快速发展的阶段。此目标取决于通过复杂的异构网络链接的复杂的互连系统的大型网络-传感器,武器,士兵。这些网络的绝对规模和规模促使行为超出了系统或“系统”的集合。大型系统集群之间缺乏中心位置以及相互分离,相互竞争的利益,使得超大型(ULS)系统具有此特征。 ULS系统的这些特征挑战并破坏了当今软件和系统工程方法的基本假设。在没有中央控制器的情况下,系统用户可能会采取机会主义的行为来满足其当地的任务要求,而不是整个系统的目标。在这种情况下,当参与者表现自私时,基于经济学和博弈论的方法和工具(例如“机制设计”)可能在实现全球最佳行为中发挥重要作用。在此背景下,本论文探索了使用计算机制来控制超大规模系统行为并实现约束计算资源的最佳分配的潜力。;我们的研究重点在于通过以下方法提高普通操作画面的质量和准确性:在战术数据网络中对自利参与者之间的带宽的有效分配,他们可能会诉诸于自利决定的战略行为。该研究问题提出了我们在应对ULS系统时所预期的挑战,并且通过解决该问题,我们希望开发一种适用于未来ULS系统的方法。我们以先前的工作为基础,研究基于拍卖的机制设计在国防界感兴趣的动态,性能关键和资源受限的系统中的应用。在本文中,我们考虑了一个场景,其中许多军事平台具有任务是检测和跟踪目标。军事平台上的传感器对操作图片有部分且不准确的视图,并且需要利用从相邻传感器发送的数据,以提高其自身测量的准确性。通信是通过战术数据网络以稀缺的带宽进行的。军事平台的局部目标可能与全球系统目标不一致的可能性使问题更加复杂。这种情况可能发生在多旗帜,多平台的军事演习中,其中每个平台的军事指挥官都比其他平台更关心自己的平台的福祉。因此,有必要设计一种机制,以有效地分配网络内的数据流,以确保尽管各个行为者自私自利,但所产生的全局性能可最大化整个系统的信息增益。基于修改后的严格正确评分规则的两阶段机制,成本未知,因此多个传感器平台可以提供有限精度的估算,并且中心在计算付款时不必依赖于实际结果的知识。特别是,我们的工作强调了应用可靠的优化技术来应对操作环境中不确定性的重要性。我们将基于鲁棒优化的评分规则算法应用于作战战术数据网络的基于Agent的模型框架,并对获得的结果进行分析。通过这项工作,我们希望证明机制设计是如何在博弈论和科学的交集中扎根的。微观经济学非常适合解决ULS系统范式的一系列挑战-传统系统工程方法不适应的挑战。

著录项

  • 作者

    Mour, Ankur.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Engineering Aerospace.;Engineering System Science.;Economics General.;Military Studies.
  • 学位 M.S.A.A.
  • 年度 2013
  • 页码 186 p.
  • 总页数 186
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号