首页> 外文学位 >Adsorbate coverage dependence in heterogeneous catalysis: Kinetics of oxygen adsorption on platinum surfaces from first principles.
【24h】

Adsorbate coverage dependence in heterogeneous catalysis: Kinetics of oxygen adsorption on platinum surfaces from first principles.

机译:非均相催化中吸附物覆盖率的依赖性:铂表面上氧吸附的动力学原理。

获取原文
获取原文并翻译 | 示例

摘要

The rational design of more versatile, selective, and durable catalysts relies on the ability to both understand the chemistry of existing catalysts and predict the behavior of new materials. Quantum-based computational methods play an important role in this discovery by allowing accelerated screening of new materials and providing a deeper, molecular-level understanding of how chemistry happens at catalyst surfaces. However, due to the complexity and heterogeneity of real heterogeneous catalysts, purely computational methods have difficulties predicting quantitatively accurate metrics of catalyst performance.;A fundamental inconsistency exists between the kinetic models typically used to understand experimental results and the nature of first-principles data intended to parameterize such models. To overcome this "model gap," new kinetic models must be developed to incorporate surface heterogeneity directly into the rate expressions.;In this work, we combine DFT calculations with cluster expansion and Monte Carlo techniques to model reactivity at catalyst surfaces completely from first principles. Oxygen adsorption to transition metal surfaces, particularly platinum, is a critical step in many catalytic oxidation reactions and presents interesting modeling challenges due to the existence of strong lateral interactions between adsorbates. We first characterize the coverage-dependent adsorption thermodynamics of oxygen on the low-symmetry Pt(321) surface, identifying ground state structures and examining their relative stability when exposed to various gas-phase environments.;We then explore the coverage-dependent kinetics of O2 dissociation on this surface in the context of Pt-catalyzed NO oxidation: NOg+1 2g⇀ Pt↽NO2g and temperature programmed desorption of O2 from Pt: 2O*→O2g +* .;In doing so, we introduce a non-mean-field, first-principles "reaction site" kinetic model and develop a novel combination of computational tools needed for practical application of this model. We report the first molecularly detailed, quantitatively accurate model of NO oxidation on Pt and examine how the structure insensitivity observed experimentally is tied to the coverage-induced heterogeneity in this system. We also predict oxygen TPD in agreement with experiment and provide insight into the role of adsorbate--adsorbate interactions in determining the shape and position of desorption peaks.
机译:多功能,选择性和耐用性更好的催化剂的合理设计依赖于既能了解现有催化剂的化学性质,又能预测新材料性能的能力。基于量子的计算方法在此发现中起着重要作用,它可以加速对新材料的筛选,并提供对催化剂表面化学反应方式的更深入的分子水平的理解。但是,由于实际非均相催化剂的复杂性和非均质性,单纯的计算方法难以预测定量准确的催化剂性能指标。;通常用于理解实验结果的动力学模型与所准备的第一性原理数据的性质之间存在根本的矛盾。参数化此类模型。为了克服这个“模型鸿沟”,必须开发新的动力学模型以将表面异质性直接纳入速率表达式中。在这项工作中,我们将DFT计算与簇扩展和蒙特卡洛技术相结合,完全根据第一原理对催化剂表面的反应性进行建模。 。氧吸附到过渡金属表面(特别是铂)上是许多催化氧化反应中的关键步骤,由于被吸附物之间存在强烈的侧向相互作用,因此提出了有趣的建模挑战。我们首先表征低对称性Pt(321)表面上氧气的与覆盖率有关的吸附热力学,鉴定基态结构并在暴露于各种气相环境下检查其相对稳定性。在Pt催化的NO氧化的背景下,该表面上的O2分解:NOg + 1 2grharu; Pt&NO2g和Pt的O2程序升温脱附:2O *→O2g + *。在此过程中,我们引入了非均值的第一性原理“反应部位”动力学模型,并开发了新颖的计算工具组合该模型的实际应用所需。我们报告了第一个分子详细,定量准确的NO在Pt上氧化的模型,并检查了实验观察到的结构不敏感性如何与该系统中的覆盖物诱导的异质性联系在一起。我们还预测了与实验一致的氧气TPD,并深入了解了吸附物-吸附物相互作用在确定解吸峰的形状和位置中的作用。

著录项

  • 作者

    Bray, Jason M.;

  • 作者单位

    University of Notre Dame.;

  • 授予单位 University of Notre Dame.;
  • 学科 Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 321 p.
  • 总页数 321
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号