首页> 外文学位 >Host specificity in Medicago-Sinorhizobium interactions: Structural characterization of symbiotically significant LMW-EPS from Sinorhizobium meliloti.
【24h】

Host specificity in Medicago-Sinorhizobium interactions: Structural characterization of symbiotically significant LMW-EPS from Sinorhizobium meliloti.

机译:苜蓿-根瘤菌相互作用中的宿主特异性:苜蓿中华根瘤菌共生显着LMW-EPS的结构表征。

获取原文
获取原文并翻译 | 示例

摘要

Rhizobium, Bradyrhizobium, and Sinorhizobium (rhizobia) may bring about the formation of root nodules on leguminous host plants, in which they reduce dinitrogen to ammonia in a symbiotic relationship with specific legume plants and molecular signals are included in the establishment of nitrogen-fixing nodules on the legume roots. For example, bacterial exopolysaccharides (EPS) and K antigens promote the infection of alfalfa by Sinorhizobium meliloti. This study focused on ecotype-strain specificity in Medicago truncatula-S. meliloti interactions: Specific strains of S. meliloti infect M. truncatula ecotype A17 (compatible), but fail to establish nitrogen-fixing nodules on ecotype A20 at 28 days post infection (incompatible). Importantly, the phenotypes are reversed with other S. meliloti strains. The first part of the study demonstrated the following: incompatibility is not a consequence of an avirulence factor or Nod factor activity; there is structural variability in the succinoglycan oligosaccharide populations between S. meliloti strains; the structural nature of the succinoglycan oligosaccharides is correlated to compatibility; and most importantly, that an S. meliloti Rm41 derivative, carrying exo genes from an M. truncatula A17-compatible strain, produced a modified population of succinoglycan oligosaccharides and conferred A17-compatibility to strain Rm41. Thus, a host-plant structural requirement for succinoglycan activity determines compatibility in M. truncatula-S. meliloti interactions. The second part of the study involved the analysis of succinoglycan oligosaccharide production by each strain to determine if the biologically active oligosaccharides result from specific biosynthesis rather than the random assembly of available precursors. The analysis of the S. meliloti NRG247 oligosaccharides showed that the biosynthesis of the oligosaccharides is not a random polymerization of the monomer population. The last part of the study examined whether there is an altered pattern of oligosaccharide substitution or size range upon exposure of S. meliloti NRG185 to a plant signal, apigenin. There was a significant decrease in the production of the active trimer within the trimer population. This would effectively turn off this signal system after infection has begun.
机译:根瘤菌,缓生根瘤菌和中华根瘤菌(根瘤菌)可能导致豆科寄主植物上根瘤的形成,其中根瘤菌将其与特定豆科植物共生地还原成氮,并将分子信号包括在固氮根瘤的建立中。在豆科植物的根上。例如,细菌胞外多糖(EPS)和K抗原会促进苜蓿中华根瘤菌对苜蓿的感染。这项研究的重点是紫花苜蓿-S中的生态型菌株特异性。 meliloti相互作用:特定菌株的S. meliloti感染了M. truncatula生态型A17型(兼容),但在感染后28天未能在A20型生态型上建立固氮根瘤(不兼容)。重要的是,该表型与其他苜蓿链球菌菌株相反。研究的第一部分证明以下内容:不相容性不是无毒因子或Nod因子活性的结果;苜蓿链球菌菌株之间的琥珀聚糖寡糖群体存在结构变异性;琥珀聚糖寡糖的结构性质与相容性有关。最重要的是,携带来自截枝分枝杆菌A17兼容菌株的exo基因的S. meliloti Rm41衍生物产生了改良的琥珀聚糖寡糖群体,并赋予了A17与菌株Rm41的兼容性。因此,对琥珀聚糖活性的寄主植物结构要求决定了截枝分枝杆菌-S中的相容性。 meliloti相互作用。研究的第二部分涉及分析每种菌株的琥珀聚糖寡糖生产,以确定其生物活性寡糖是否源自特定的生物合成,而不是可用前体的随机组装产生。对S.meliloti NRG247寡糖的分析表明,寡糖的生物合成不是单体群体的无规聚合。该研究的最后一部分研究了将S.meliloti NRG185暴露于植物信号芹菜素后,寡糖取代模式或大小范围是否发生变化。三聚体群体中活性三聚体的产量显着下降。在感染开始后,这将有效地关闭此信号系统。

著录项

  • 作者

    Simsek, Senay.;

  • 作者单位

    Purdue University.$bFood Science.;

  • 授予单位 Purdue University.$bFood Science.;
  • 学科 Agriculture Plant Culture.; Agriculture Plant Pathology.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 141 p.
  • 总页数 141
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 作物生物学原理、栽培技术与方法;植物病理学;
  • 关键词

  • 入库时间 2022-08-17 11:40:48

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号