首页> 外文学位 >Applications of planar and patterned metal oxide nanocomposites and reactive polymer blends as gas permeation membranes.
【24h】

Applications of planar and patterned metal oxide nanocomposites and reactive polymer blends as gas permeation membranes.

机译:平面和有图案的金属氧化物纳米复合材料与反应性聚合物混合物作为气体渗透膜的应用。

获取原文
获取原文并翻译 | 示例

摘要

The work in this dissertation is divided into two distinct projects. The majority of this dissertation was based on applications of planar and patterned metal oxide nanocomposites; in particular modifying the properties of both polymer nanocomposites and all inorganic nanocomposites. A series of nanocomposites were generated to modify the refractive index or dielectric constant of these materials. Three applications were developed for the material systems created. The first was a high dielectric constant (k) layer that was used to generate all solution processable OFETs. Next, a novel strategy was created for patterning metal oxide nanoparticle nanocomposites, by using a form of solvent assisted nanoimprint lithography, which had previously only been adapted for metal nanoparticles. This simple and straightforward approach was used for a number of different nanoparticle systems, titanium dioxide (TiO2), cerium dioxide (CeO2), zirconium dioxide (ZrO2), iron oxide (Fe2O3), and indium doped tin oxide (ITO), along with either organic or inorganic based binders. These nanocomposites were then developed to generate high surface area doped solid oxide fuel cell electrolytes. Finally, the first known all solution processable log-pile 3D photonic crystal was created, by using a high refractive index TiO2 nanocomposite. A transfer printing technique was invented to use a layer-by-layer strategy to generate a 6-layer 3D photonic crystal that was able reflect over 70% of the incident electromagnetic spectrum at 1000 nm. The second project developed a reactive polymer blend that was used as for CO2/N2 gas separations. The polymer blend was based on commodity scale block copolymers, PluronicRTM (poly(ethylene oxide )-b-poly(propylene oxide)-b-poly(ethylene oxide), PEO-b-PPO-PEO) which are phase separated in the melt. The block copolymer becomes phase separated upon the addition of a hydrogen bond donating polymer, in this case a polyimide precursor, poly(amic acid) (PAmA), which was synthesized from pyromellitic dianhydride and 4, 4'-oxydianiline (PMDA-ODA PAmA). These blends were shown to favorably interact due to the amide and carboxylic acid groups present on the PMDA-ODA PAmA. The PMDA-ODA PAmA can be thermally imidized, while maintaining order and the ideal gas permeation properties were investigated to determine the likelihood of these blends to be used for commercial gas separation membranes.
机译:本文的工作分为两个不同的项目。本论文的大部分内容是基于平面和图案化的金属氧化物纳米复合材料的应用。特别是改变聚合物纳米复合材料和所有无机纳米复合材料的性能。产生了一系列纳米复合材料,以改变这些材料的折射率或介电常数。为创建的材料系统开发了三个应用程序。第一个是高介电常数(k)层,用于生成所有可溶液处理的OFET。接下来,通过使用溶剂辅助的纳米压印光刻形式创建了一种用于图案化金属氧化物纳米颗粒纳米复合材料的新颖策略,该方法以前仅适用于金属纳米颗粒。这种简单明了的方法用于许多不同的纳米粒子系统,包括二氧化钛(TiO2),二氧化铈(CeO2),二氧化锆(ZrO2),氧化铁(Fe2O3)和铟掺杂的氧化锡(ITO),以及有机或无机基粘合剂。然后将这些纳米复合材料显影以产生高表面积掺杂的固体氧化物燃料电池电解质。最后,通过使用高折射率的TiO2纳米复合材料,创建了第一个已知的可溶液处理的对数堆3D光子晶体。发明了一种转移印刷技术,以使用逐层策略来生成6层3D光子晶体,该晶体能够在1000 nm处反射超过70%的入射电磁光谱。第二个项目开发了一种反应性聚合物共混物,可用于分离CO2 / N2气体。聚合物共混物基于商品规模的嵌段共聚物PluronicRTM(聚(环氧乙烷)-b-聚(环氧丙烷)-b-聚环氧乙烷,PEO-b-PPO-PEO)在熔体中相分离。嵌段共聚物在添加给氢键的聚合物(在这种情况下为聚酰亚胺前体聚酰胺酸(PAmA))中相分离,该聚合物由均苯四酸二酐和4,4'-氧二苯胺(PMDA-ODA PAmA)合成)。由于PMDA-ODA PAmA上存在酰胺基和羧酸基,这些共混物显示出良好的相互作用。可以对PMDA-ODA PAmA进行热酰亚胺化,同时保持顺序,并研究了理想的气体渗透性能,以确定这些共混物用于商业气体分离膜的可能性。

著录项

  • 作者单位

    University of Massachusetts Amherst.;

  • 授予单位 University of Massachusetts Amherst.;
  • 学科 Engineering Materials Science.;Chemistry Polymer.;Chemistry Inorganic.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 192 p.
  • 总页数 192
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号