首页> 外文学位 >Thermal processes in sodium borohydride hydrogen storage systems.
【24h】

Thermal processes in sodium borohydride hydrogen storage systems.

机译:硼氢化钠储氢系统中的热过程。

获取原文
获取原文并翻译 | 示例

摘要

Depleting fossil fuel supplies, environmental pollution, and global warming demand a new energy carrier for future transportation systems, and hydrogen has been recognized as a promising candidate. On-board hydrogen storage, among other challenges, must be addressed before a hydrogen economy could be realized. Sodium borohydride hydrogen storage systems have been identified as a potential candidate to meet the storage challenge.; Calorimetery measurements have been conducted to clarify the inconsistency in the heat of reaction data of sodium borohydride hydrolysis reported in prior literature. The heat of reaction was measured to be 210+/-11 kJ/mol NaBH 4, significantly less than the often cited value of 300 kJ/mol NaBH 4. Reaction kinetics of sodium borohydride hydrolysis on ruthenium catalyst at different temperatures has also been measured, and a Langmuir-Hinshelwood kinetic model has been developed. The newly developed kinetic model captures zero-order kinetic behavior at low temperatures and first-order kinetic behavior at high temperatures.; A 1kWe sodium borohydride system was designed and fabricated. Its behavior at the system level was tested under different flow rates, concentrations, inlet temperatures and operating pressures. Higher flow rates and higher operating pressures decrease chemical conversion, while higher concentrations increase chemical conversion. The temperature profile was found to be a strong indicator of chemical conversion inside the reactor. A one-dimensional homogeneous reactor model has been developed based on experimental data, and its predictions match measured data very well.; Discharged products from 15% NaBH4 or higher concentrations crystallize upon cooling to room temperature and become a solid that would be very difficult to remove from the discharge tank. Considering the practical challenges of keeping the discharged products warm and preventing crystallization, this work concludes that 10 to 15% NaBH4 may be the highest concentration that could be used for practical hydrolysis. Such solutions would have gravimetric densities of 2.1 to 3.1 wt% hydrogen, falling short of the DOE target of 6 wt% for 2010.
机译:化石燃料供应的枯竭,环境污染和全球变暖要求为未来的运输系统提供新的能源载体,而氢已被认为是有前途的候选者。在实现氢经济之前,必须解决车载氢存储以及其他挑战。硼氢化钠储氢系统已被确定为应对存储挑战的潜在候选者。已经进行了量热法测量以澄清现有文献中报道的硼氢化钠水解反应数据中的不一致。经测量,反应热为210 +/- 11 kJ / mol NaBH 4,大大低于经常引用的300 kJ / mol NaBH 4的值。在不同温度下,硼氢化钠在钌催化剂上的水解反应动力学也已测定。 ,并且已经开发了Langmuir-Hinshelwood动力学模型。新开发的动力学模型捕获了低温下的零阶动力学行为和高温下的一阶动力学行为。设计并制造了一个1kWe​​硼氢化钠系统。在不同的流速,浓度,入口温度和工作压力下测试了它在系统级的行为。较高的流速和较高的工作压力会降低化学转化率,而较高的浓度则会增加化学转化率。发现温度曲线是反应器内部化学转化的重要指标。根据实验数据建立了一维均相反应器模型,其预测值与实测数据非常吻合。 15%NaBH4或更高浓度的排出产物在冷却至室温后会结晶并变成固体,很难从排出罐中除去。考虑到保持排出的产物温暖和防止结晶的实际挑战,这项工作得出的结论是10%至15%的NaBH4可能是可用于实际水解的最高浓度。这类溶液的重量密度为氢气的2.1至3.1 wt%,低于2010年DOE的6 wt%的目标。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号