首页> 外文学位 >Microphone based on polyvinylidene fluoride (PVDF) micro-pillars and patterned electrodes.
【24h】

Microphone based on polyvinylidene fluoride (PVDF) micro-pillars and patterned electrodes.

机译:基于聚偏二氟乙烯(PVDF)微柱和图案化电极的麦克风。

获取原文
获取原文并翻译 | 示例

摘要

Piezoelectric materials have the ability to transfer energy between the electric and mechanical domains. Polyvinylidene fluoride (PVDF) exhibits higher piezoelectricity than other polymer materials such as nylon and polyvinyl chloride. PVDF is a superior material for sensors because its stress constant, the ability to convert stress into electrical energy, is more than 20 times higher than that of lead zirconate titanate. Nonetheless, there is significant interest in improving the effective stress constant of PVDF devices beyond the intrinsic sensitivity of the material. Significant research has focused on improvements in material properties, such as increasing beta phase ratio or artificially introducing defects, and processing, such as optimizing stretch ratio and poling temperature or applying a high electric field. This research is focused on improving the stress constant, or sensor sensitivity, by means of design.;The acoustic sensor presented in this dissertation exploits the key advantages of PVDF as a sensor material by means of two key design elements aimed at increasing the charge and decreasing the effective device capacitance. The first design element is a stress amplification mechanism through the area ratio between the overall surface exposed to acoustic waves and the area of an array of PVDF micro-pillars. Because PVDF responds to stress, this mechanism increases the amount of charge for a given pressure level. The second design element is top and bottom electrodes selectively patterned to form an overlapping active area determined by the micro-pillars. Excluding the capacitance of the other inactive area, the design with patterned electrodes reduces the capacitance of the sensor and hence increases the voltage generated by the sensor.;The small size, high stiffness, and reduced mass of MEMS sensors are of great interest because such devices can significantly improve both the temporal and spatial measurement bandwidth. The sensor realization requires micro-fabrication process and this technology is available at the Biomedical Engineering Center of The Ohio State University. Previously patterned polydimethylsiloxane (PDMS) stamps molded from photolithographically fabricated masters are used in the production of individual and interconnected PVDF micro-pillar arrays. Taking advantage of the thickness or "33" mode, the developed PVDF micro-pillar sensor has a frequency bandwidth of at least 20 Hz-100 kHz and maximum response of up to a few MHz (depending on specific sensor dimensions).;A PVDF micro-pillar sensor with patterned electrodes and gap ratio of 5.82 was developed and various acoustic tests were performed on this sensor. The sensitivity calibration test shows that the developed sensor has a sensitivity of 189.3 muV/Pa, which is 60.39x greater than that of commercial solid PVDF with the same footprint and thickness. The measured stress constant of the sensor is -19.93 V/m/Pa, which is 60.39x larger than that of commercial solid PVDF (g33 =-0.33 V/m/Pa). The measured stress constant amplification ratio is in good agreement with the predicted amplification ratio of 59.19, thus confirming the performance advantages of the micropillar sensor.
机译:压电材料具有在电域和机械域之间转移能量的能力。聚偏二氟乙烯(PVDF)具有比其他聚合物材料(如尼龙和聚氯乙烯)更高的压电性。 PVDF是传感器的上乘材料,因为它的应力常数(将应力转换为电能的能力)比锆钛酸铅高20倍以上。但是,人们对提高PVDF器件的有效应力常数超出材料的固有灵敏度有着极大的兴趣。大量的研究集中在材料性能的改善上,例如增加β相比或人为引入缺陷,以及在处理上进行诸如优化拉伸比和极化温度或施加高电场等处理。这项研究的重点是通过设计提高应力常数或传感器灵敏度。本论文提出的声传感器通过两个主要设计元素来利用PVDF作为传感器材料的关键优势,旨在增加电荷和增加降低有效器件电容。第一个设计元素是应力放大机制,它通过暴露于声波的整个表面与PVDF微柱阵列的面积之间的面积比来实现。由于PVDF响应压力,因此该机制会增加给定压力水平下的电荷量。第二设计元素是选择性地构图以形成由微柱确定的重叠有源区域的顶部和底部电极。除其他非活动区域的电容外,带有图案化电极的设计会减小传感器的电容,从而增加传感器产生的电压。MEMS传感器的小尺寸,高刚度和轻质化引起了人们的极大兴趣,因为这样设备可以显着改善时间和空间测量带宽。传感器的实现需要微细加工过程,该技术可从俄亥俄州立大学生物医学工程中心获得。由光刻制造的母模模制的先前图案化的聚二甲基硅氧烷(PDMS)压模用于生产独立且相互连接的PVDF微柱阵列。利用厚度或“ 33”模式的优势,已开发的PVDF微柱传感器具有至少20 Hz-100 kHz的频率带宽和高达几MHz的最大响应(取决于特定的传感器尺寸)。开发了带有图案化电极且间隙比为5.82的微柱传感器,并对该传感器进行了各种声学测试。灵敏度校准测试表明,开发的传感器的灵敏度为189.3 muV / Pa,比具有相同覆盖面积和厚度的商用固态PVDF的灵敏度高60.39倍。传感器测得的应力常数为-19.93 V / m / Pa,比商用固体PVDF(g33 = -0.33 V / m / Pa)大60.39倍。测得的应力常数放大率与预测的59.19放大率非常吻合,从而证实了微柱传感器的性能优势。

著录项

  • 作者

    Xu, Jian.;

  • 作者单位

    The Ohio State University.;

  • 授予单位 The Ohio State University.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 162 p.
  • 总页数 162
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号