首页> 外文学位 >Waveform and transceiver optimization for multi-functional airborne radar through adaptive processing.
【24h】

Waveform and transceiver optimization for multi-functional airborne radar through adaptive processing.

机译:通过自适应处理优化多功能机载雷达的波形和收发器。

获取原文
获取原文并翻译 | 示例

摘要

Pulse compression techniques have been widely used for target detection and remote sensing. The primary concern for pulse compression is the sidelobe interference. Waveform design is an important method to improve the sidelobe performance. As a multi-functional aircraft platform in aviation safety domain, ADS-B system performs functions involving detection, localization and alerting of external traffic. In this work, a binary phase modulation is introduced to convert the original 1090 MHz ADS-B signal waveform into a radar signal. Both the statistical and deterministic models of new waveform are developed and analyzed. The waveform characterization, optimization and its application are studied in details. An alternative way to achieve low sidelobe levels without trading o range resolution and SNR is the adaptive pulse compression - RMMSE (Reiterative Minimum Mean-Square error). Theoretically, RMMSE is able to suppress the sidelobe level down to the receiver noise floor. However, the application of RMMSE to actual radars and the related implementation issues have not been investigated before. In this work, implementation aspects of RMMSE such as waveform sensitivity, noise immunity and computational complexity are addressed. Results generated by applying RMMSE to both simulated and measured radar data are presented and analyzed. Furthermore, a two-dimensional RMMSE algorithm is derived to mitigate the sidelobe effects from both pulse compression processing and antenna radiation pattern. In addition, to achieve even better control of the sidelobe level, a joint transmit and receive optimization scheme (JTRO) is proposed, which reduces the impacts of HPA nonlinearity and receiver distortion. Experiment results obtained with a Ku-band spaceborne radar transceiver testbed are presented.
机译:脉冲压缩技术已广泛用于目标检测和遥感。脉冲压缩的主要问题是旁瓣干扰。波形设计是提高旁瓣性能的重要方法。作为航空安全领域的多功能飞机平台,ADS-B系统执行的功能涉及外部交通的检测,定位和警报。在这项工作中,引入了二进制相位调制,以将原始的1090 MHz ADS-B信号波形转换为雷达信号。开发并分析了新波形的统计模型和确定性模型。详细研究了波形表征,优化及其应用。在不牺牲范围分辨率和SNR的情况下实现低旁瓣电平的另一种方法是自适应脉冲压缩-RMMSE(迭代最小均方误差)。从理论上讲,RMMSE能够将旁瓣电平抑制到接收器本底噪声。但是,RMMSE在实际雷达中的应用以及相关的实现问题之前尚未进行过研究。在这项工作中,解决了RMMSE的实现方面,例如波形灵敏度,抗噪性和计算复杂性。提出并分析了通过将RMMSE应用于模拟和测量雷达数据而产生的结果。此外,导出了二维RMMSE算法,以减轻脉冲压缩处理和天线辐射方向图的旁瓣效应。另外,为了实现对旁瓣电平的更好控制,提出了一种联合发射和接收优化方案(JTRO),该方案减少了HPA非线性和接收机失真的影响。介绍了使用Ku波段星载雷达收发器测试台获得的实验结果。

著录项

  • 作者

    Wang, Shang.;

  • 作者单位

    The University of Oklahoma.;

  • 授予单位 The University of Oklahoma.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 190 p.
  • 总页数 190
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号