首页> 外文学位 >Myosin Heavy Chain Isoforms Influence Stretch Activation and Cross Bridge Kinetics of Drosophila Muscles.
【24h】

Myosin Heavy Chain Isoforms Influence Stretch Activation and Cross Bridge Kinetics of Drosophila Muscles.

机译:肌球蛋白重链同工型影响果蝇肌肉的拉伸激活和跨桥动力学。

获取原文
获取原文并翻译 | 示例

摘要

Myosin is the molecular motor that powers muscle contraction. Variation between myosin isoforms is a major determinant of muscle mechanical properties including shortening velocity and perhaps stretch activation (SA). We investigated the effect of Ca2+ concentration and myosin heavy chain (MHC) isoforms on SA, and attempted to determine the rate-limiting step of the myosin cross-bridge cycle for maximum shortening velocity. First, to understand the relationship between Ca2+ concentration, stretch-activated tension (FSA) and Ca2+-activated tension (F O), we measured FSA and power generation in skinned Drosophila indirect flight muscles (IFMs). We found that a large SA response was induced in Ca2+ activated IFMs upon a 1% muscle length increase. At pCa 4.5, FSA and FO made up ~70% and 30% of total active tension (FO+FSA), respectively. We found that IFM power output increased with increasing [Ca2+], indicating that Drosophila may regulate power output by varying Ca2+ levels instead of adjusting the number of motor units recruited. The contribution to power enhancement over the physiological Ca 2+ range of pCa 5.7 to pCa 5.4 from FSA was 4-fold greater than from FO, suggesting that FSA plays a major role in regulating IFM power output during insect flight. Second, we observed the effect of MHC isoforms on SA and power generation of Drosophila jump muscles (TDT) by replacing the native TDT MHC with the embryonic MHC isoform (EMB) and the indirect flight muscle MHC isoform (IFI). We found that the TDT muscle displayed only minimal SA and could not produce positive power under oscillatory conditions at pCa 5.0. However, it was transformed to be moderately stretch-activatable and could produce positive power when the EMB MHC isoform was expressed. We found that Pi increased EMB, but not wild type, SA force and power. Based on this observation, we propose a mechanism by which myosin isoforms can endow a muscle with a moderate amount of SA that includes myosin strain sensitivity and Pi affinity. In contrast, we found that expressing IFI from the highly SA IFM muscle in TDT muscles neither affected SA properties nor allowed positive power generation under oscillatory conditions. This suggests the IFI MHC isoform in Drosophila TDT is insufficient to enable SA, and that the IFM uses another mechanism to attain its very high FSA. Finally, to evaluate if shortening velocity of fast myosins is limited by Pi release rather than ADP release, we observed the effect of Pi concentration on unloaded shortening velocity (Vslack) of Drosophila TDT muscles expressing the IFI, the native TDT and EMB-3b MHC isoforms. We found that Vslack of fibers expressing the IFI isoform was greatest (∼ 145% of control TDT), followed by TDT and EMB-3b (∼ 65% of control TDT). Increasing [Pi] decreased the isometric tension of all three transgenic fibers, whereas Vslack was not significantly altered. This result suggests that Pi release rate does not limit the maximum shortening velocity of fast muscle types.
机译:肌球蛋白是促进肌肉收缩的分子运动。肌球蛋白同工型之间的差异是决定肌肉力学性能的主要因素,包括缩短速度,可能还包括拉伸激活(SA)。我们调查了Ca2 +浓度和肌球蛋白重链(MHC)同工型对SA的影响,并尝试确定肌球蛋白跨桥循环的限速步骤以实现最大缩短速度。首先,要了解Ca2 +浓度,拉伸激活张力(FSA)和Ca2 +激活张力(F O)之间的关系,我们测量了果蝇间接飞行肌肉(IFM)中的FSA和发电。我们发现,当肌肉长度增加1%时,就会在Ca2 +活化的IFM中诱导出较大的SA反应。在pCa 4.5时,FSA和FO分别占总活动张力(FO + FSA)的70%和30%。我们发现,IFM的功率输出随着[Ca2 +]的增加而增加,这表明果蝇可以通过改变Ca2 +的水平来调节功率输出,而不用调节募集的电机装置的数量。从FSA到pCa 5.7到pCa 5.4的生理Ca 2+范围内,功率增强的贡献比FO高4倍,这表明FSA在昆虫飞行过程中在调节IFM功率输出中起主要作用。其次,我们观察到MHC亚型对果蝇跳跃肌(TDT)的SA和能量产生的影响,方法是用胚胎MHC亚型(EMB)和间接飞行肌肉MHC亚型(IFI)代替天然TDT MHC。我们发现TDT肌肉仅显示最小的SA,并且在pCa 5.0的振荡条件下不能产生正能量。但是,它被转化为适度可拉伸活化的物质,并在表达EMB MHC同工型时产生正电。我们发现Pi增加了EMB,但没有增加野生型,SA的力量和力量。基于此观察,我们提出了一种机制,通过该机制肌球蛋白同工型可以赋予肌肉适量的SA,包括肌球蛋白应变敏感性和Pi亲和力。相反,我们发现在TDT肌肉中从高度SA IFM肌肉表达IFI既不影响SA特性,也不允许在振荡条件下产生正能量。这表明果蝇TDT中的IFI MHC同工型不足以实现SA,IFM使用另一种机制来获得其很高的FSA。最后,为了评估快肌球蛋白的缩短速度是否受Pi释放而不是ADP释放的限制,我们观察到Pi浓度对表达IFI,天然TDT和EMB-3b MHC的果蝇TDT肌肉的空载缩短速度(Vslack)的影响。亚型。我们发现表达IFI同工型的纤维的Vslack最大(约占对照TDT的145%),其次是TDT和EMB-3b(约占对照TDT的65%)。增大Pi降低了所有三种转基因纤维的等轴测张力,而Vslack没有显着改变。该结果表明Pi释放速率不限制快速肌肉类型的最大缩短速度。

著录项

  • 作者

    Zhao, Cuiping.;

  • 作者单位

    Rensselaer Polytechnic Institute.;

  • 授予单位 Rensselaer Polytechnic Institute.;
  • 学科 Biology General.;Biophysics General.;Biology Molecular.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 116 p.
  • 总页数 116
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号