首页> 外文学位 >Dispersion and self-assembly of anisotropic plasmonic nanoparticles in liquid crystalline media.
【24h】

Dispersion and self-assembly of anisotropic plasmonic nanoparticles in liquid crystalline media.

机译:各向异性等离子体纳米颗粒在液晶介质中的分散和自组装。

获取原文
获取原文并翻译 | 示例

摘要

Noble metal nanoparticles possess extraordinary optical properties due to their plasmon modes that make them desirable for inclusion into materials. Non-dipolar plasmon modes are one of the simplest known ways to control the magnetic properties of a material; consequently gold nanoparticles are one of the most promising systems to produce metamaterials. In order to fully utilize the properties of gold nanoparticles for device applications, one needs to control the interparticle spacing, distribution, and orientation of anisotropic gold nanoparticles within a material. Liquid crystalline host materials can allow for alignment and self-assembly of nanoparticles through viscoelastic forces. In this thesis, I demonstrate the feasibility of incorporating nanoparticles into liquid crystals and assembling complex architectures through elasticity mediated interaction.;First, we explore the dispersion of nanoparticles of various size and shape in a few different liquid crystalline systems. 20nm thick gold nanorods can be dispersed at reasonably high concentrations in micellar lyotropic systems, but show qualitatively different self-assembly behavior depending on their length. 10 micron wide, 5nm thick polygonal platelets produce elastic distortions in thermotropic and lyotropic systems, while behaving like "molecular" inclusions in a graphene oxide based discotic phase.;Next, we look at the elastic interactions between colloids of various shapes and sizes and topological defects. Homeotropically aligned glass microspheres produce a hyperbolic hedgehog point defect or Saturn ring which attract and align nanoparticles in different manners depending on the surface chemistry, size and shape of the nanoparticle. We have also optically generated topological defects in frustrated cholesteric cells which contain similar hyperbolic hedgehog point defects that eliminates the need of microsphere inclusions. We have produced elastomeric cylinders with photothermal response enhanced by gold nanospheres that allow for an arbitrary particle shape to be generated in situ to explore the rich physics associated with arbitrary nematostatic and cholesterostatic dipoles.;This work extends our understanding of colloidal inclusions in liquid crystals to the regime where the mesogen size and colloidal inclusion have sizes within a couple orders of magnitude of each other and potentially allows for the development of an exciting new class of nanocomposite liquid crystalline materials.
机译:贵金属纳米粒子由于其等离激元模式而具有非凡的光学特性,这使其成为包含在材料中的理想材料。非偶极等离子体激元模式是控制材料磁性能的最简单的已知方法之一。因此,金纳米颗粒是生产超材料的最有前途的系统之一。为了充分利用金纳米颗粒的性质用于设备应用,需要控制材料中各向异性金纳米颗粒的颗粒间间距,分布和取向。液晶主体材料可通过粘弹性力实现纳米颗粒的排列和自组装。在本文中,我展示了将纳米粒子掺入液晶并通​​过弹性介导的相互作用组装复杂结构的可行性。首先,我们探索了各种尺寸和形状的纳米粒子在几种不同液晶系统中的分散性。 20nm厚的金纳米棒可以在胶束溶致体系中以较高的浓度分散,但根据其长度显示出在质量上不同的自组装行为。 10微米宽,5纳米厚的多边形血小板在热致和溶致体系中会产生弹性变形,同时表现出基于氧化石墨烯的盘状相中的“分子”夹杂物。缺陷。垂直排列的玻璃微球会产生双曲线的刺猬点缺陷或土星环,根据纳米颗粒的表面化学性质,大小和形状,它们以不同的方式吸引和排列纳米颗粒。我们还在受挫的胆甾型细胞中光学产生了拓扑缺陷,该缺陷包含类似的双曲线刺猬点缺陷,从而消除了对微球包裹体的需求。我们生产了具有金纳米球增强的光热响应的弹性体圆柱体,该圆柱体允许在原位生成任意颗粒形状,以探索与任意消静电和胆固醇抑制偶极子相关的丰富物理原理;介晶尺寸和胶体夹杂物的尺寸彼此相差几个数量级,并且可能允许开发令人兴奋的新型纳米复合液晶材料。

著录项

  • 作者

    Evans, Julian.;

  • 作者单位

    University of Colorado at Boulder.;

  • 授予单位 University of Colorado at Boulder.;
  • 学科 Physics General.;Physics Condensed Matter.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 247 p.
  • 总页数 247
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号