首页> 外文学位 >Reconfigurable Low Profile Antennas Using Tunable High Impedance Surfaces.
【24h】

Reconfigurable Low Profile Antennas Using Tunable High Impedance Surfaces.

机译:使用可调高阻抗表面的可重构低剖面天线。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation shows a detailed investigation on reconfigurable low profile antennas using tunable high impedance surfaces (HIS). The specific class of HIS used in this dissertation is called a frequency selective surface (FSS). This type of periodic structure is fabricated to create artificial magnetic conductors (AMCs) that exhibit properties similar to perfect magnetic conductors (PMCs). The antennas are intended for radiometric sensing applications in the biomedical field. For the particular sensing application of interest in this dissertation, the performance of the antenna sub-system is the most critical aspect of the radiometer design where characteristics such as small size, light weight, conformability, simple integration, adjustment in response to adverse environmental loading, and the ability to block external radio frequency interference to maximize the detection sensitivity are desirable.;The antenna designs in this dissertation are based on broadband dipole antennas over a tunable FSS to extend the usable frequency range. The main features of these antennas are the use of an FSS that does not include via connections to ground, their low profile and potentially conformal nature, high front-to-back radiation pattern ratio, and the ability to dynamically adjust the center frequency. The reduction of interlayer wiring on the tunable FSS minimizes the fabrication complexity and facilitates the use of flexible substrates.;This dissertation aims to advance the state of the art in low profile tunable planar antennas. It shows a qualitative comparison between antennas backed with different unit cell geometries. It demonstrates the feasibility to use either semiconductor or ferroelectric thin film varactor-based tunable FSS to allow adjustment in the antenna frequency in response to environment loading in the near-field. Additionally, it illustrates how the coupling between antenna and HIS, and the impact of the varactor losses affect the antenna performance and it shows solutions to compensate these adverse effects. Novel hybrid manufacturing approaches to achieve flexibility on electrically thick antennas that could be transitioned to thin-film microelectronics are also presented.;The semiconductor and ferroelectric varactor-based tunable low profile antennas demonstrated tunability from 2.2 GHz to 2.65 GHz with instantaneous bandwidths greater than 50 MHz within the tuning range. The antennas had maximum thicknesses of λ/45 at the central frequency and front to back-lobe radiation ratios of approximately 15dB. They also showed impedance match improvement in the presence of a Human Core Model (HCM) phantom at close proximity distances of the order of 10-20 mm. In addition, the use of thin film ferroelectric Barium Strontium Titanate (BST) varactors in the FSS layer enabled an antenna that had smaller size, lower cost and less weight compared to the commercially available options.;The challenging problems of fabricating robust flexible antennas are also addressed and novel solutions are proposed. Two different types of flexible antennas were designed and built. A series of flexible microstrip antennas with slotted grounds which demonstrated to be robust and have 42% less mass than typically used technologies (e.g., microstrip antennas fabricated on Rogers® RT6010, RT/duroid® 5880, etc.); and flexible ferroelectric based tunable low profile antennas that showed tunability from 2.42 GHz to 2.66 GHz using overlapping metallic plates instead of a continuous ground plane. The bending test results demonstrated that, by placing cuts on the ground plane or using overlapping metallic layers that resemble fish scales, it was possible to create highly conductive surfaces that were extremely flexible even when attached to other solid materials. These new approaches were used to overcome limitations commonly encountered in the design of antennas that are intended for use on non-flat surfaces.;The material presented in this dissertation represents the first investigation of reconfigurable low profile antennas using tunable high impedance surfaces where the desired electromagnetic performance as well as additional relevant features such as robustness, low weight, low cost and low complexity were demonstrated.
机译:本文详细研究了使用可调谐高阻抗表面(HIS)的可重构低剖面天线。本文所使用的HIS的特定类别称为频率选择表面(FSS)。制造此类周期性结构以创建人造磁导体(AMC),其表现出与完美磁导体(PMC)相似的特性。这些天线旨在用于生物医学领域的辐射感测应用。对于本文感兴趣的特定传感应用,天线子系统的性能是辐射计设计中最关键的方面,其特点是体积小,重量轻,一致性好,易于集成,可适应不利的环境负荷进行调整并希望能够阻止外部射频干扰以最大化检测灵敏度。本文的天线设计基于可调谐FSS上的宽带偶极子天线,以扩展可用频率范围。这些天线的主要特点是使用了FSS,该FSS不包括与地面的直通连接,其低矮的外形和潜在的共形特性,高的前后辐射方向图比以及动态调整中心频率的能力。可调FSS上层间布线的减少最大程度地降低了制造复杂性并促进了柔性基板的使用。本论文旨在提高薄型可调平面天线的技术水平。它显示了支持不同单位晶格几何形状的天线之间的定性比较。它证明了使用基于半导体或铁电薄膜变容二极管的可调FSS来响应于近场环境负载而调整天线频率的可行性。此外,它还说明了天线与HIS之间的耦合以及变容二极管损耗的影响如何影响天线性能,并给出了补偿这些不利影响的解决方案。还提出了新颖的混合制造方法,以实现可在电子厚天线上实现灵活性的灵活性,该方法可以过渡到薄膜微电子学。基于半导体和铁电变容二极管的可调谐薄型天线在2.2 GHz至2.65 GHz的可调谐性下具有瞬时带宽大于50调谐范围内的MHz。天线在中心频率处的最大厚度为λ/ 45,前后瓣辐射比约为15dB。他们还显示,如果存在人体核心模型(HCM)幻像,且相距十分近,约为10-20 mm,则阻抗匹配会有所改善。此外,与市售选件相比,在FSS层中使用薄膜铁电钛酸锶钡(BST)变容二极管可使天线尺寸更小,成本更低,重量更轻。还解决并提出了新颖的解决方案。设计并制造了两种不同类型的柔性天线。一系列具有开槽接地的柔性微带天线,经证实具有坚固性,并且质量比通常使用的技术低42%(例如,在Rogers®RT6010,RT /duroid®5880等上制造的微带天线);基于柔性铁电的可调式薄型天线,使用重叠的金属板而不是连续的接地层,可显示2.42 GHz至2.66 GHz的可调性。弯曲测试结果表明,通过在地平面上放置切口或使用类似于鱼鳞的重叠金属层,可以创建高导电性的表面,即使将其附着到其他固体材料上也具有极高的柔韧性。这些新方法被用来克服通常用于非平面表面的天线设计中遇到的局限性。本论文中的材料代表了对使用可调谐高阻抗表面的可重构低剖面天线的首次研究,该天线在需要的地方演示了电磁性能以及其他相关功能,例如坚固性,轻巧,低成本和低复杂性。

著录项

  • 作者

    Cure, David.;

  • 作者单位

    University of South Florida.;

  • 授予单位 University of South Florida.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 196 p.
  • 总页数 196
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号