首页> 外文学位 >Dynamics of Charged Colloids in Nonpolar Solvents.
【24h】

Dynamics of Charged Colloids in Nonpolar Solvents.

机译:非极性溶剂中带电胶体的动力学。

获取原文
获取原文并翻译 | 示例

摘要

Charging is typically not expected in nonpolar environments due to a high electrostatic barrier to charge dissociation. Nevertheless, charge effects are observed in such environments upon the addition of surfactants, which aggregate to form charge-stabilizing reverse micelles. Surfactants facilitate the charging and electrostatic stabilization of particles dispersed in nonpolar solvents. Suspensions of charged particles in nonpolar solvents are found in a variety of applications, such as electrophoretic displays, in which charged pigment particles are arranged with an external electric field to form an image. The ability to precisely control the locations and trajectories of the particles using an electric field is essential. However, the behavior of charged particles in a nonpolar solvent in response to an electric field is not fully understood.;To investigate the behavior of charged particles in nonpolar solvents, we fabricate a novel microfluidic device that allows us to apply an electric field across a particle suspension and directly visualize the particles as they move across a channel. We image the particles, analyze the particle dynamics, and explore the relationship between the dynamics and the electrical properties of the suspension.;We find that the presence of reverse micelles has a significant effect on particle motion. In a constant applied electric field, the particles initially move, but then unexpectedly slow down and stop. This behavior is due to screening of the applied field by the accumulation of charged reverse micelles at the channel walls. Consequently, the internal electric field within the channel decays exponentially. The decay time constant is dependent on the electrical conductivity of the suspension and the size of the channel. We model this behavior as an equivalent RC circuit.;We also explore the behavior of charged particles in applied fields that are large enough to transport the particles completely across the channel. We find that the transport of particles is governed by a fingering instability. Furthermore, repeated switches of the direction of the field results in the localization of particles into a well-defined, periodic pattern. The wavelength of this pattern is dependent on the frequency of the applied field.
机译:由于对电荷解离的高静电势垒,在非极性环境中通常不会期望充电。然而,在这样的环境中,在添加表面活性剂后观察到电荷效应,所述表面活性剂聚集形成稳定电荷的反胶束。表面活性剂促进分散在非极性溶剂中的颗粒的充电和静电稳定。非极性溶剂中带电粒子的悬浮液存在于多种应用中,例如电泳显示器,其中带电颜料粒子与外部电场一起排列以形成图像。使用电场精确控制粒子的位置和轨迹的能力至关重要。然而,尚未完全了解带电粒子在非极性溶剂中响应电场的行为。为了研究带电粒子在非极性溶剂中的行为,我们制造了一种新颖的微流体装置,该装置可让我们在整个电极上施加电场粒子悬浮液,并在粒子通过通道移动时直接可视化它们。我们对粒子成像,分析粒子动力学,并探索动力学和悬浮液电学性质之间的关系。;我们发现反胶束的存在对粒子运动有重要影响。在恒定的施加电场中,粒子最初移动,但随后意外减速并停止。此行为是由于通道壁上带电的反胶束的聚集而屏蔽了施加的电场。因此,通道内的内部电场呈指数衰减。衰减时间常数取决于悬浮液的电导率和通道的大小。我们将此行为建模为等效的RC电路。我们还研究了带电粒子在应用场中的行为,该场足够大以完全将粒子传输通过通道。我们发现粒子的传输受指法不稳定性的支配。此外,场方向的反复切换导致粒子定位为明确定义的周期性模式。该图案的波长取决于所施加场的频率。

著录项

  • 作者

    Lin, Tina.;

  • 作者单位

    Harvard University.;

  • 授予单位 Harvard University.;
  • 学科 Physics Electricity and Magnetism.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 58 p.
  • 总页数 58
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号